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Because most potential molecular markers and targets are pro-
teins, proteomic profiling is expected to yield more direct answers
to functional and pharmacological questions than does transcrip-
tional profiling. To aid in such studies, we have developed a
protocol for making reverse-phase protein lysate microarrays with
larger numbers of spots than previously feasible. Our first appli-
cation of these arrays was to profiling of the 60 human cancer cell
lines (NCI-60) used by the National Cancer Institute to screen
compounds for anticancer activity. Each glass slide microarray
included 648 lysate spots representing the NCI-60 cell lines plus
controls, each at 10 two-fold serial dilutions to provide a wide
dynamic range. Mouse monoclonal antibodies and the catalyzed
signal amplification system were used for immunoquantitation.
The signal levels from the >30,000 data points for our first 52
antibodies were analyzed by using p-scan and a quantitative dose
interpolation method. Clustered image maps revealed biologically
interpretable patterns of protein expression. Among the principal
early findings from these arrays were two promising pathological
markers for distinguishing colon from ovarian adenocarcinomas.
When we compared the patterns of protein expression with those
we had obtained for the same genes at the mRNA level by using
both ¢cDNA and oligonucleotide arrays, a striking regularity ap-
peared: cell-structure-related proteins almost invariably showed a
high correlation between mRNA and protein levels across the
NCI-60 cell lines, whereas non-cell-structure-related proteins
showed poor correlation.

H igh-throughput transcript profiling has generated large bod-
ies of information on gene expression. However, proteomic
profiling will yield more direct answers to our current biological
and pharmacological questions, because the majority of known
biological effector molecules, diagnostic markers, and pharma-
ceutical targets are proteins, not mRNA. The first broadly useful
technology for proteomic profiling was two-dimensional poly-
acrylamide gel electrophoresis (2D-PAGE) (1), which typically
permits semiquantitation of the most abundant thousand or so
spots, but poses the difficult problem of identifying the spots with
particular proteins. More recently, microarray formats have
been introduced for proteomic profiling, most of them based on
robotic spotting of antibodies or other ligands that capture the
protein molecules to be assessed (2, 3).

Reverse-phase protein lysate microarrays, recently reported
by Paweletz et al. (4), are based on the opposite configuration.
Samples to be assessed are robotically spotted, and an antibody
is then used to measure the amount of a particular protein
present in the sample. In contrast to 2D-PAGE and antibody
arrays, the reverse-phase methodology assesses only one protein
per slide, but it has the great advantage that all of the cell or
tissue samples can be analyzed side by side in a single array. That
is an advantage because, for functional studies, we are generally
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more interested in comparing protein levels across samples than
in comparing samples across protein types (5, 6).

To date, however, the reverse-phase protein lysate microarray
has been limited by technical considerations to relatively small
numbers of spots. That became a serious problem when we
wished to profile proteins in the 60 human cancer cell lines
(NCI-60) used by the National Cancer Institute’s Developmental
Therapeutics Program since 1990 to screen >100,000 chemical
compounds for anticancer activity (7-9). Hence, as will be
described here, we developed, to our knowledge, new methods
to obtain higher density, robotically spotted reverse-phase pro-
tein lysate microarrays with high precision of protein measure-
ment. Our first application was to the NCI-60, but the technology
is applicable much more broadly.

The NCI-60 set includes leukemias, lymphomas, and carcinomas
of ovarian, renal, breast, prostate, colon, lung, and CNS origin.
Because the screening data proved rich in information on the
mechanisms of action of tested compounds (5, 7-10), our labora-
tory and many others have profiled the NCI-60 extensively at the
DNA, RNA, protein, and functional levels for correlation with
pharmacological sensitivities of the cells (5-13). Our laboratory’s
approach has been to profile the cells’ characteristics in aggregate
by using high-throughput, omic (14, 15) technologies. We began in
the mid-1990’s with 2D-PAGE (6), but were limited by the protein
identification problem and switched focus to the mRNA level,
applying cDNA microarrays (11, 12) and Affymetrix oligonucleo-
tide chips (13). Studies at the DNA level are also in progress (16).
Overall, the NCI-60 is the most extensively profiled set of cells
anywhere, and the data sets on them have been widely used in the
cancer research and bioinformatics communities. No cell lines in
culture are fully representative of tumors in vivo, of course, but they
have the advantages of reproducibility, availability in large num-
bers, and homogeneity in cell lineage (5).

Our reverse-phase protein lysate microarrays for the NCI-60
include 10 serial two-fold dilutions per cell sample (plus controls)
and therefore permit measurements of considerable precision and
wide dynamic range (4). The detection limit (defined as a signal two
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SD above background) for the reverse-phase arrays has been
estimated at 2,000 molecules detected per spot for recombinant
PSA. The functional sensitivity (defined as the lowest concentration
measured with a coefficient of variation of 20% within an array) is
~5,000 molecules per spot (4, 17). It is important to realize,
however, that such a figure depends to a considerable extent on the
physical characteristics of the particular target protein and on all
aspects of the antigen—antibody interaction on the array.

We report here the results for an initial 52 proteins and use the
data to address a question that has intrigued researchers for
years: How similar are expression profiles at the RNA and
protein levels? This correlation has previously been assessed
across proteins within single cell types (18-20), but, because of
the special characteristics of the reverse-phase format and the
diversity of the NCI-60, we were able to assess the correlation in
the more appropriate way, across disparate cell types for each
protein. That, in turn permitted us to ask whether particular
classes of proteins were better correlated than others with
mRNA expression. The initial result was a striking difference
between structural and nonstructural protein types.

Materials and Methods

Protein Lysate Preparation. The NCI-60 cell lines were cultured
and protein prepared from them as described for our studies by
using 2D gel electrophoresis (6). Briefly, cells were collected by
scraping and washed three times with cold PBS. The resulting
pellets were lysed in buffer containing 9 M urea (Sigma), 4%
3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate
(CHAPS; Calbiochem), 2% pH 8.0-10.5 Pharmalyte (Amer-
sham Pharmacia Biotech, Piscataway, NJ), and 65 mM DTT
(Amersham Pharmacia Biotech) (21). After lysis, the samples
were centrifuged briefly, and the supernatants were stored at
—80°C. A reference pool was prepared by mixing equal volumes
of all 60 cell lines.

Protein Lysate Array Design and Production. Arrays were prepared
on nitrocellulose-coated glass slides (FAST Slides, Schleicher &
Schuell) by using a pin-in-ring format GMS 417 arrayer (Af-
fymetrix, Santa Clara, CA) with four 500-um-diameter pins.
Because the samples were viscous, we used the pin-in-ring
format to avoid problems due to clogging of quills. Fig. 14 shows
the design of the array. Ten two-fold serial dilutions were made
from each lysate. Four 384-well microtiter plates (Genetix, New
Milton, Hampshire, U.K.) were used to array 640 spots (plus
eight spatial registration marks for use in image processing) on
a 21 X 35-mm area of nitrocellulose membrane. The first
dilution (four-fold) was made with buffer containing 5 M urea,
2% Pharmalyte, pH 8-10.5, and 65 mM DTT. The remaining
dilutions were then made with buffer containing 6M urea, 1%
CHAPS, 2% Pharmalyte, pH 8-10.5, and 65 mM DTT. Hence,
only the lysate concentration changed along each dilution series.
The urea concentration was thus kept at 6 M, and the CHAPS
concentration at 2%, to keep proteins in their denatured forms.
We could remove samples repeatedly from —80°C storage for
use without heating. To avoid evaporation in the microtiter plate
during spotting, we kept the humidity in the array chamber at
70-90% with a Vicks ultrasonic humidifier (Kaz, Hudson, NY).
Arraying was completed for each microtiter plate within 70 min.
Arrays were produced in batches of 20, and the occasional
low-quality array (e.g., with many spot dropouts) was discarded.

Western Blotting. Murine monoclonal antibodies were screened for
specificity by Western blotting with 20 ug of lysate protein per lane.
The running buffer contained 62.5 mM TrissHCl, pH 6.8, 2% SDS,
10% glycerol, and 2.5% 2-mercaptoethanol. We used a 4-15%
SDS-polyacrylamide linear gradient gel (TrissHCI Ready Gel, Bio-
Rad), secondary alkaline phosphatase-conjugated goat anti-mouse
antibody, and the chemiluminescent immunoblot detection system
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Fig. 1. NCI-60 reverse-phase protein lysate microarrays. (A) Staining with
SYPRO ruby for total protein. Each row (see enlarged image at the left) consists
of 10 two-fold dilutions of an NCI-60 cell line or the control pool. The pool was
spotted at four locations to control for pin effects. Concentrated pool was spotted
at the bottom right corner of each field to serve as a registration mark for
scanning. (B) CSA staining for p300 expression. (C) Negative control. (D) Repre-
sentative candidate antibodies prescreened for specificity by Western blotting
(20 ng per lane) with NCI-60 pool. *, bands at the predicted molecular weight.
Blots 1-7 (from the left) show a single predominant band at the expected
molecular weight. Blots 8—10 represent antibodies rejected for the array appli-
cation because (i) the target band is fainter than other bands (lane 8); (ii) the
target band is approximately equal in intensity to other bands (lane 9); and (iii)
the target band isdominant (lane 10), but the other bands persist when the lysate
is diluted to a point that the target band is below saturation (data not shown).

(Tropix, Bedford, MA). An antibody was accepted only if it
produced a single predominant band at the expected molecular
weight. Multiple types of information (including screening results)
on the antibodies and their antigens were entered into a relational
database, ABMINER, which can be accessed at http://discover.
ncinih.gov (S.M., S.N., R. Rowland, U. Shankavaram, F. Wash-
burn, D. Asin, HK.-M., and J.N.W., unpublished work).

Detection of Specific and Total Protein on Microarrays. Each array
was incubated with a specific primary antibody, which was
detected by using the catalyzed signal amplification (CSA)
system (DAKO). Briefly, each slide was washed manually with
deionized water to remove urea. Then, in an Autostainer
universal staining system (DAKO), it was blocked with I-block
(Tropix) and incubated with primary and secondary antibodies.
Also in the Autostainer, it was then incubated with streptavidin—
biotin complex, biotinyl tyramide (for amplification) for 15 min,
streptavidin-peroxidase for 15 min, and 3,3’-diaminobenzidine
tetrahydrochloride chromogen for 5 min. Between steps, the
slide was washed with CSA buffer. The signal was scanned with
a Perfection 12008 scanner (Epson America, Long Beach, CA)
with 256-shade gray scale at 600 dots per inch. For detection of
total protein, arrays were stained with SYPRO ruby protein blot
stain (Molecular Probes) and scanned with a FluorImager SI
(Amersham Pharmacia Biotech) at 100-um resolution. Spot
images were converted to raw pixel values by a modified version

Nishizuka et al.
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Fig. 2.

Analysis of p300 expression. (A) An array incubated with p300 primary antibody and stained by CSA. (B) Sixty four dilution curves in eight fields on the

array. y axes, P-SCAN intensity of p300 signal; x axes, log(dilution factor). Numbers after cell line names are Dlys values. The order of cell line listing corresponds
to placement on the array. (C) Dlys algorithm calculations for field 7. Broken line, the 25% level (at 43 units).

of the P-SCAN (Peak quantification with Statistical Comparative
Analysis) software (http://abs.cit.nih.gov/pscan) (22).

Dose Interpolation Data Analysis. Outliers traceable to defects in
spotting were eliminated, and the data were then analyzed by
using a dose interpolation (DI) algorithm developed for this
study. Briefly, the maximum spot intensity (/max) Was defined
heuristically to be the third highest value observed anywhere on
the array, and the minimum intensity (/min) Was defined heuris-
tically to be the mean of the tenth (i.e., last) dilution points over
all cell types, Imin = I. The estimated dilution factor, 3), for each
cell type was then determined by interpolation in a monotonic
linear spline fitted to the serial dilution curve. If the linear spline
is represent by I = f, where ¢ is the true dilution factor, then

DIp = CAb :fl [Imin +p*(lmax - Imin)]7

where p is the fraction of the way from minimum to maximum
value of the intensity. On the basis of extensive optimization
studies (L.Y., S.N., JN.W., and P.J.M., unpublished work), we
selected the P = 25% point because it optimally served two
sometimes opposing purposes: (i) it minimized the measurement
variance, and (i) it yielded DI, values for as many as possible of
the dose-response curves. These DIs values were calculated for
both target and total protein levels. To correct for any differ-
ences in protein content among the cell lysates, each experi-
mental DI,s value was normalized by the mean over the 52 slides
of the total protein DI,s values for the particular cell line. The
final values formed a 52 X 64 matrix for 52 antibodies tested
against the 60 cell lines plus four NCI-60 pools.

Nishizuka et al.

Results

Prescreening of Antibodies. Fig. 1D shows representative Western
blot prescreening of 10 murine monoclonal antibodies against
the NCI-60 pool. We tested >200 different antibodies, and
~70% of them showed a single predominant band at the
predicted molecular weight.

High-Density Reverse-Phase Protein Lysate Microarrays. Each array
(Fig. 14) included serial dilutions of all 60 cell lines plus four
pooled samples (640 spots in all). Fig. 1B shows, for illustration,
an array incubated with mouse anti-human-p300 IgG. As a
negative control, a duplicate slide was incubated with mouse
anti-Aspergillus niger glucose oxidase 1gG; (Fig. 1C), which does
not recognize any human antigen. Little nonspecific signal was
seen, either with that control IgG or when primary antibody was
omitted. The data for all 52 proteins can be accessed at http://
discover.nci.nih.gov and in Table 1, which is published as sup-
porting information on the PNAS web site.

Assessing Reproducibility. Fig. 2 shows the 64 dilution curves
obtained for p300 expression and illustrates the DIs calculation.
To analyze experimental variability (see Fig. 5, which is pub-
lished as supporting information on the PNAS web site), we
measured p300 levels on arrays consisting of 24 repeats of the
NCI-60 pool dilution series. This control study was repeated six
times to investigate slide-to-slide, pin-to-pin, and row-to-row
variation. We used a three-way random effects ANOVA to assess
the components of variance, expressed as relative error (i.e.,
coefficient of variation) in the concentration estimate. The
variation due to slide was 6.8%; due to pin, 6.6%; and due to row,
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1.0%. The remaining variation (pure error) was 13.9%. The
overall coefficient of variation was 17%. Additional indicators of
reproducibility were obtained from the full arrays. The median
Pearson correlation was +0.86 for all six possible pairwise
combinations of the four cell pool replicates per slide across 52
antibodies. Because each pool on a slide was spotted with a
different pin, any pin effects were included in this figure. The
median Pearson correlation coefficient was +0.72 for the 15
pairwise comparisons of six replicate arrays across 60 cell lines
(plus four cell pools) for p300 [Fig. 6, which is published as
supporting information on the PNAS web site, shows the range
(maximum minus minimum) and SD for each of the 52 proteins
across the NCI-60 cell lines].

Clustering of Cells and Proteins. To organize the cell lines and
proteins on the basis of expression patterns, we used the
Clustered Image Map program package, CIMMINER (5), which
can be accessed at http://discover.nci.nih.gov. The results for
average linkage clustering with a correlation coefficient metric
are shown in Fig. 3. Cell clustering patterns generally resembled
those obtained at the transcript level (11-13). For example,
MDA-MB435 (derived from the pleural effusion of a patient
who had previously had breast cancer), and its c-erbB2 trans-
fectant, MDA-N, clustered with seven melanotic melanomas.
We have seen that same association at the mRNA level and also
when clustering the cells by drug sensitivity patterns (11). Also,
as seen in the transcript and pharmacological data, MDA-MB-
435 and MDA-N clustered together essentially as although they
were replicates. Despite high expression of c-erbB2 protein in
MDA-N, the Pearson correlation between the two cell lines in
the present study was very strong, +0.91 (two-tailed bootstrap
95% confidence limits = +0.66 to +0.98). Without c-erbB2, the
correlation coefficient was even higher (+0.98; confidence lim-
its = +0.95 to + 0.99). This observation is reflected in more
detail in Fig. 7, which is published as supporting information on
the PNAS web site. Fig. 7 shows very small differences between
MDA-MB435 and MDA-N across the entire dilution curve.

In terms of the protein axis in Fig. 3, all replicates (of Stat3,
moesin, MGMT, E-cadherin, and p300) clustered together, even
though the replicates in some cases represented different batches
of arrays. An epithelial cluster consisted of cytokeratins 8, 18,
and 20, as well as villin, c-erbB2, and E-cadherin. Overall, the
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measured protein expression patterns appeared to be technically
reliable and biologically reasonable.

Comparison of Transcript and Protein Expression Patterns. For the
comparison, we had NCI-60 data from two independent transcrip-
tional profiling platforms, cDNA arrays and oligo arrays. To match
transcript and protein names, we used the MATCHMINER program
(http://discover.nci.nih.gov; ref. 23). MATCHMINER leverages sev-
eral major public databases (i) to translate among various gene and
protein identifiers for lists of genes, or (i) to find the intersection
between two such lists. Thirty-one of the 52 could be matched and
appeared on all three array platforms. Because there are known
problems in identification with both the cDNA and oligo array
platforms, however, we excluded from further analysis any tran-
scripts that did not show reasonable concordance (correlation
coefficient >0.30) between the two. That level of concordance for
any given gene would be highly unlikely to occur by chance (24). The
19 remaining molecular species showed a high correlation of
Pearson correlation coefficients between cDNA /protein and oligo/
protein data (+0.92; two-tailed bootstrap 95% confidence limits =
+0.74 to +0.96). The overall cDNA/protein and oligo/protein
correlation coefficients for these 19 were +0.52 (range —0.10 to
+0.87) and +0.40 (range —0.15 to +0.88), respectively. Fig. 4 shows
the relationships among these three types of measurements for 19
genes represented in all three databases. In this scattergram, genes
for which ¢cDNA/protein and oligo/protein values were similar
appear near the major 45° diagonal. Proteins that matched the
transcript level closely appear toward the upper right.

Discussion

We have developed a protocol for making reverse-phase protein
lysate microarrays with larger numbers of spots than previously
feasible and have applied those arrays to proteomic profiling of the
NCI-60 human cancer cell lines. Previously, we had profiled the
NCI-60 by 2D-PAGE (6), but the utility of those studies was limited
by the difficulty of indexing protein spots across all of the gels and
identifying the spots with particular proteins. The reverse-phase
protein lysate microarray does not suffer those two problems,
because all 60 cell types can be spotted on the same slide and
because the proteins are detected with monoclonal antibodies of
known (and Western blot-confirmed) specificity.

Nishizuka et al.
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Unlike antibody arrays (2, 3) and similar alternative methods, the
reverse-phase configuration does not require tagging of the lysate
with a dye that could influence the binding (4), and it does not
require careful matching of the antibodies’ binding characteristics.
Because standard enzyme-linked immunoassays would not have
been sensitive enough for the array application, we used an ampli-
fied detection system (CSA). To assess the protein levels over a
wide dynamic range, we spotted the lysate at 10 two-fold serial
dilutions. That design, however, required larger reverse-phase
microarrays than previously feasible. The protocol developed, a
modification of that described by Paweletz et al. (4), has several
useful features: (7) it permits use of protein lysate samples that have
been collected in nonionic, urea-containing medium (e.g., for
parallel assessment on 2D-PAGE gels); (ii) it keeps the proteins in
alargely unfolded state by maintaining a high concentration of urea
(6 M), plus CHAPS (2%) and DTT (65 mM), in the lysate
throughout the serial dilutions; (iii) it uses a nonvolatile reducing
agent (DTT); (iv) it avoids the necessity of boiling the lysate
[particularly important if the original sample contained urea,
because heated urea can covalently modify proteins (21)]; (v) it
permits the microtiter plates (384-well) used in robotic spotting to
be frozen and thawed between uses; (vi) it includes maintenance of
a high relative humidity (=80%) during spotting to prevent evap-
oration of liquid from the microtiter plates; and (vii) it includes
staining for total protein (to normalize the data). We used this
protocol to make arrays of 648 spots, incorporating 10 dilutions of
the 60 cell lines, four control pools composed of all 60 lines, and
eight spatial registration marks. With an overall coefficient of
variation of 17%, this array methodology appears to be a useful tool
for quantitative measurement.

The murine monoclonal antibodies used for detection were
tested for specificity by Western blotting, and those that did not
produce a single predominant band at the expected molecular
weight were rejected. It should be understood, however, that lack
of a significant second band with the pool could not rule out the
possibility that a second band would be significant in one or two
of the 60 lines, and it could not rule out crossreaction of the
antibody with close family members that have similar molecular
weight and bear the epitope. These potential problems are
analogous to ones encountered with other expression platforms
such as cDNA, oligo, and antibody microarrays. Further triage
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on the antibodies, for example by 2D Western blotting, would
introduce additional complexities related to the distinctions
among different posttranslational modifications.

The experiments produced 64 concentration-dilution curves
for each slide. As illustrated in Fig. 2, we analyzed those curves
using the program package P-SCAN (http://abs.cit.nih.gov/
pscan), followed by our DI algorithm. That algorithm was the
product of extensive sensitivity analyses to be presented else-
where (LY., S.N., JN.W., and P.J.M., unpublished work).

The results were analyzed statistically in a number of ways.
The clustered image map in Fig. 3 shows cell lines and proteins
clustered to bring like together with like and bring out patterns
of coherence (5, 6). The cell clusters were similar to those
obtained at the transcriptional level with cDNA microarrays (11,
12), as discussed more fully in Results.

Because it is technically easier, transcript profiling has developed
more rapidly than has protein profiling, and the transcripts are often
thought of, implicitly or explicitly, as surrogates for the proteins they
code. However, protein levels cannot be inferred from transcript
data. The two types of profiling give complementary information,
and our mRNA and protein profiles for the NCI-60 provide an
opportunity to compare the two across a wide variety of cell types.
To our knowledge, that has not previously been done. Furthermore,
the fact that we have profiled the transcript levels by two very
different methods, cDNA arrays and Affymetrix oligonucleotide
arrays, provides extra assurance of quality; we are able to focus the
comparison on those genes for which the two gave concordant
results. That assurance is important because of well known sources
of error in both methods. Of the 52 proteins studied to date by
reverse-phase protein lysate microarray, 31 can also be identified on
both the cDNA and oligo arrays by using our MATCHMINER
program (23). Of those 31, 19 show a sufficient correlation (>0.30)
between cDNA array and oligo array sets to indicate (at the
two-tailed P = 0.03 level) that they do not represent different,
unrelated transcripts. As shown in Fig. 4, the 19 show a high
correlation coefficient (+0.92) between cDNA /protein and oligo/
protein correlation coefficients (Fig. 4), providing a solid basis
for analysis of the relationship between transcript and protein
abundances.

The mean ¢cDNA/protein and oligo/protein correlation co-
efficients for the 19 species across 60 cell lines are +0.52 and
+0.40, respectively, but Fig. 4 clearly indicates a wide range of
mRNA protein correlations for different molecular species. The
highest individual values are +0.87 and +0.88 for cDNA /protein
and oligo/protein array correlations of cytokeratin 8. The lowest
are the analogous values of —0.10 and —0.15 for ISGF3G.

We next ask whether particular categories of molecules have high
or low correlations. Visual inspection of the data points in Fig. 4
immediately leads to the hypothesis that proteins related to cell
structure are more highly correlated with mRNA levels than are
nonstructural proteins. To pursue that hypothesis more concretely,
we use functional definitions obtained from SWISS-PROT (http://
us.expasy.org) and/or MIPS (http://mips.gsf.de) through
GeneCards (http://bioinfo.weizmann.ac.il) to classify the proteins
as “cell-structure-related” or “non-cell-structure-related.” The
structure-related proteins fell into three subcategories: type I
membrane proteins (ERBB2, CDH1, CDH2, and MCP), actin-
binding proteins (FN1, VIL1, MSN), and keratins (KRTS8). The
non-structure-related proteins also fell into three subcategories:
nuclear proteins (PCNA, STAT3, ISGF3G, EP300, and MSH2),
cell-cycle control proteins (CCNA2, CCNB1, MCM7, and
MAPK1), and others (GSK3B and FADD).

Asindicated in Fig. 4, the structure-related proteins are almost
always better correlated with mRNA levels across the 60 cell
lines. P = 0.0007 for the cDNA/protein correlation, and P =
0.004 for the oligo/protein correlation (two-tailed, nonpaired ¢
test). For the corresponding nonparametric (Wilcoxon) tests of
significance, P = 0.0005 and 0.005, respectively. These statistics
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do not imply a causal relationship, however; there could easily be
a confounding factor.

Let us now consider more precisely why one might expect a
high correlation between mRNA and protein expression levels.
Assume the simplest possible kinetic model,

where i denotes the cell type (i = 1, 60),j the molecular species (j =
1,19), R the number of mRNA molecules per cell, P the number of
protein molecules per cell, « the rate constant for producing protein
from mRNA, and B the rate constant for degradation of protein.
This equation holds for log-phase growth if one averages over all
cell-cycle phases for an unsynchronized cell population. It holds
regardless of whether an individual protein molecule has a defined
lifetime or has an equal probability of being degraded at all points
in time. Quite generally, for mathematical stationarity in cell
properties, we have the proportionality

P ij = ainij/ By-

When we compare mRNA and protein levels across cell lines for a
given molecule type, we are correlating P; with R;, where P; is the
vector (in this case of length 60) of levels of the jth protein across
cell lines, and R; is defined analogously. If, for a givenj, o;/B; were
the same for all i, the correlation would be perfect. A poor
correlation between P; and R; implies that this ratio differs, for
whatever reason, from cell type to cell type. Previous studies
(18-20) of mRNA /protein correlation were addressing a different
issue, the relationship between P; and R; (i.e., the correlation across
molecular species for a given cell type). The former type of
correlation is most naturally addressed by the reverse-phase format,
because all cell types are represented on a single array for a given
protein type. mRNA and antibody arrays have the opposite char-
acteristic. Because of the various factors that influence antibody
binding, neither lysate arrays nor antibody arrays give directly
commensurate results from protein to protein.
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Insofar as the correlation across cell types is high for structure-
related species, we might be able to use mRNA profiling data to
identify candidate molecular markers for use at the protein level by
immunohistochemistry. We have, in fact, used this approach to
identify villin and moesin as diagnostic markers for distinguishing
colon from ovarian adenocarcinomas in the abdomen (25). That is
an important differential diagnosis to make because it determines
the type of chemotherapy given. We initially identified the markers
by using cDNA and Affymetrix oligo microarrays. The reverse-
phase protein lysate microarrays described here then showed them
to be good markers at the protein level as well, and the findings were
strikingly confirmed for clinical tumors in tissue array format. These
markers are being followed up for possible use in clinical pathology.
In accord with our overall findings, both villin and moesin were
identified as cell structure-related proteins (26, 27), as indicated in
Fig. 4. Also consistent with our findings here are published reports
(although based on limited numbers of cell types) that the structural
proteins cytokeratin 8, CDHI, villin, and moesin are transcription-
ally regulated (20, 26-31).

In conclusion, we have developed reverse-phase protein lysate
microarrays with larger numbers of spots than previously feasible
and have used them for accurate measurements of the expression
levels of 52 proteins to date across the NCI-60 cell lines. One
significant finding was a class of molecular species (cell-
structure-related) for which the mRNA /protein correlation was
high. Exploration of the proteome is still in its early stages, and
this technology can be expected to contribute significantly to our
basic understanding, as well as to more practical endeavors like
the identification of molecular markers and targets for therapy.

We thank E. A. Sausville, A. Monks, D. A. Scudiero, K. D. Paull, and
others in the National Cancer Institute Developmental Therapeutics
Program, whose work over the years and in collaboration with us has
made these studies of the NCI-60 cell lines possible; D. A. Ross and
others in the Brown/Botstein laboratory at Stanford University (Stan-
ford, CA); J. Staunton and others in the Golub/Lander group at the
Whitehead Institute (Cambridge, MA) for collaborations that generated
the transcript profiles used for comparison with protein profiles in this
work; and D. Beitner-Johnson for editing a draft of the manuscript.

15. Weinstein, J. N., Scherf, U, Lee, J. K., Nishizuka, S., Gwadry, F., Bussey, A. K.,
Kim, S., Smith, L. H., Tanabe, L., Richman, S., et al. (2002) Cytometry 47, 46—49.

16. Roschke, A. V., Tonon, G., Gehlhaus, K. S., McTyre, N., Bussey, K. J., Lababidi,
S., Scudiero, D. A., Weinstein, J. N. & Kirsch, I. R. Cancer Res., in press.

17. Liotta, L. A., Espina, V., Mehta, A. L, Calvert, V., Rosenblatt, K., Geho, D., Munson,
P. J., Young, L., Wulfkuhle, J. & Petricoin, E. F. (2003) Cancer Cell 3, 317-325.

18. Anderson, L. & Seilhamer, J. (1997) Electrophoresis 18, 533-537.

19. Gygi, S. P, Rochon, Y., Franza, B. R. & Aebersold, R. (1999) Mol. Cell. Biol.
19, 1720-1730.

20. Ideker, T., Thorsson, V., Ranish, J. A., Christmas, R., Buhler, J., Eng, J. K,,
Bumgarner, R., Goodlett, D. R., Aebersold, R. & Hood, L. (2001) Science 292,
929-934.

21. Anderson, N. L., Esquer-Blasco, R., Hofmann, J.-P. & Anderson, N. G. (1991)
Electrophoresis 12, 907-930.

22. Carlisle, A. J., Prabhu, V. V., Elkahloun, A., Hudson, J., Trent, J. M., Linehan,
W. M., Williams, E. D., Emmert-Buck, M. R., Liotta, L. A., Munson, P. J. &
Krizman, D. B. (2000) Mol. Carcinog. 28, 12-22.

23. Bussey, K. J., Kane, D., Sunshine, M., Narasimhan, S., Nishizuka, S., Reinhold,
W. C., Zeeberg, B., Ajay, W. & Weinstein, J. N. (2003) Genome Biol. 4,
R27.1-R27.7.

24. Lee, J. K., Bussey, K. J., Gwadry, F. G., Reinhold, W. C,, Riddick, G., Pelletier,
S. L., Nishizuka, S., Szakacs, G., Annereau, J.-P., Shankavaram, U., ef al.
Genome Res., in press.

25. Nishizuka, S., Chen, S. T., Gwadry, F. G., Alexander, J., Major, S. M., Scherf,
U., Reinhold, W. C., Waltham, M., Charboneau, L., Young, L., et al. (2003)
Cancer Res. 63, 5243-5250.

26. Bretscher, A. & Weber, K. (1980) Cell 20, 839-847.

27. Lankes, W. T. & Furthmayr, H. (1991) Proc. Natl. Acad. Sci. USA 88, 8297-8301.

28. Pringault, E., Arpin, M., Garcia, A., Finidori, J. & Louvard, D. (1986) EMBO
J. 5,3119-3124.

29. Calnek, D. & Quaroni, A. (1993) Differentiation (Berlin) 53, 95-104.

30. Oda, T., Kanai, Y., Oyama, T., Yoshiura, K., Shimoyama, Y., Birchmeier, W.,
Sugimura, T. & Hirohashi, S. (1994) Proc. Natl. Acad. Sci. USA 91, 1858-1862.

31. Barild, D., Murgia, C., Nobili, F. & Perozzi, G. (1995) Biochim. Biophys. Acta
1263, 133-140.

Nishizuka et al.



