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Abstract

CellMiner (http://discover.nci.nih.gov/cellminer) and
CellMinerCDB (https://discover.nci.nih.gov/cellminercdb/)
are web-based applications for mining publicly available
genomic, molecular, and pharmacologic datasets of
human cancer cell lines including the NCI-60, Cancer Cell
Line Encyclopedia, Genomics of Drug Sensitivity in Can-
cer, Cancer Therapeutics Response Portal, NCI/DTP small
cell lung cancer, and NCI Almanac cell line sets. Here, we
introduce our RNA sequencing (RNA-seq) data for the
NCI-60 and their access and integration with the other
databases. Correlation to transcript microarray expression
levels for identical genes and identical cell lines across
CellMinerCDB demonstrates the high quality of these
new RNA-seq data. We provide composite and isoform
transcript expression data and demonstrate diversity in
isoform composition for individual cancer- and pharma-
cologically relevant genes, including HRAS, PTEN, EGFR,
RAD51, ALKBH2, BRCA1, ERBB2, TP53, FGFR2, and
CTNND1. We reveal cell-specific differences in the
overall levels of isoforms and show their linkage to

expression of RNA processing and splicing genes as well
as resultant alterations in cancer and pharmacologic
gene sets. Gene–drug pairings linked by pathways
or functions show specific correlations to isoforms
compared with composite gene expression, including
ALKBH2-benzaldehyde, AKT3-vandetanib, BCR-imatinib,
CDK1 and 20-palbociclib, CASP1-imexon, and FGFR3-
pazopanib. Loss of MUC1 20 amino acid variable number
tandem repeats, which is used to elicit immune response,
and the presence of the androgen receptor AR-V4 and
-V7 isoforms in all NCI-60 tissue of origin types demon-
strate translational relevance. In summary, we introduce
RNA-seq data to our CellMiner and CellMinerCDB web
applications, allowing their exploration for both research
and translational purposes.

Significance: The current study provides RNA sequencing
data for the NCI-60 cell lines made accessible through both
CellMiner and CellMinerCDB and is an important pharma-
cogenomics resource for the field.

Introduction
Cancer cell line drug and genomic databases, pioneered by the

NCI in the 19800s with the NCI-60 cancer cell line panel (1–4),
have subsequently been expanded to larger numbers of cell lines
in initiatives including the Cancer Cell Line Encyclopedia (CCLE)
from the Broad Institute, the Genomics of Drug Sensitivity in

Cancer (GDSC) from the Massachusetts General Hospital-
Sanger Institute, and the Genentech Cell Line Screening
Initiative (5–7), expanding both molecular and drug response
data for the field. Efforts continue in the areas of accumulating,
organizing, making available, interpreting, and applying these
forms of data for the dual purposes of gaining a better under-
standing of cancers and selecting prospective treatment
options (5–11). The NCI-60 cell line screen, with approximately
21,000 drug and compound activities (in CellMiner and
CellMinerCDB; refs. 9, 12), and 5,355 two-drug combinations
(in NCI ALMANAC; refs. 9, 13), in addition to its more extensive
molecular characterization, remains the largest repository of
drug versus molecular feature information by logs. Integration
of the datasets from the NCI, the Broad Institute, the Massachu-
setts General Hospital, and the Sanger Institute has now been
done within CellMinerCDB, facilitating their assessment and
comparison (9). However, the ability to understand and utilize
the phenotypic effects of the complex translational changes
that may occur in multiple genes, multiple molecular pathways,
and multiple gene functional groups simultaneously remains
challenging.

The widespread application of RNA sequencing to human
diseases has provided both opportunities and challenges due to
the informative but complex nature of the resultant data (7, 14).
Desire for a better understanding of this complexity is motivated
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by the recognition that disruption of transcript fidelity and
increased diversity is common in cancer, resulting in function-
ally variable end-products and cancer-specific isoform varia-
tions that contribute to disease progression (15). Currently,
RNA-seq is being used diagnostically, prognostically, and ther-
apeutically. Examples include (i) identification of differences in
clear cell renal carcinoma patients stratified as being low risk by
clinicopathologic prognostic algorithms, who are actually at
high risk of death, (ii) providing information regarding the
biology, prognosis, and therapy for multiple myeloma, (iii) the
recognition of radiation-sensitive transcriptional pathways in
prostate cancer, (iv) assessing the association of miR-204 with
survival in cancer, and (v) combining RNA-seq with other
forms of data for enhanced prediction of therapeutic
response (16–21).

In the current study, we introduce RNA sequencing data for
the NCI-60 cell lines as a scientific resource. This form of data
is important as it (i) is currently widely used for patient
samples, (ii) has greater dynamic range than microarrays, and
(iii) provides information on isoforms. Regarding the latter,
here we determine both the composite (of all isoforms) and
individual isoform expression levels for all genes. We make
that data easily available through our CellMiner and CellMi-
nerCDB web applications in multiple forms and facilitate its
comparison to other forms of molecular and pharmacologic
data. We enable comparisons of the composite gene expression
levels to (i) microarray transcript data, (ii) DNA copy number,
(iii) DNA methylation, and (iv) protein expression demon-
strating significant correlations. We show that the number of
isoforms varies across cell lines, and their pattern to have
significant correlations to the transcript expression levels of
core splicing factor genes at the individual level, as well as
being linked at the omic level to RNA processing gene sets by
gene set enrichment analysis. This is logical as transcript
splicing and processing factors control the transcriptome.
Multiple genes involved in cancers and pharmacologic
response are also shown to express isoforms that result in
proteins with amino acid changes affecting both gene and
pathway function. We demonstrate the existence of multiple
biologically linked gene–drug pairs, for which the isoform
expression levels are significantly correlated with to drug
activity, whereas the same gene composite expression is not.
We propose that, when considering candidate biomarkers for
pharmacologic response, transcript isoforms of known phar-
macologically relevant genes deserve consideration, at the
same level of importance as mutations.

Materials and Methods
Cell line source, culture, and RNA purification

Cell lines were obtained from the NCI, Division of Cancer
Treatment and Diagnosis (DCTD) tumor cell line repository
(https://dtp.cancer.gov/organization/btb/docs/DCTDTumorRe
positoryCatalog.pdf). Cell culture was performed as described
previously, with harvesting at approximately 80% con-
fluency (22). Cell line authentication is described at https://
discover.nci.nih.gov/cellminer/celllineMetadata.do under the
"Fingerprint" header. Mycoplasma testing was done using
the Clongen laboratories, LLC Mycoplasma Detection using
the PCR test. RNA was purified using an RNeasy purification
kit (Qiagen, Inc.) using the manufacturer's instructions.

RNA library preparation, sequencing, alignment, and quality
control

RNA was quantified and treated with DNase according to the
manufacturer's protocol (Qiagen, Inc.). RNA was used for gener-
ating sequencing libraries using the TotalScript RNA-Seq Kit
(Epicentre), providing total RNA for sequencing without normal-
ization. The libraries were sequenced at the Center for Cancer
Research Sequencing facility using the HiSeq 2000 (Illumina)
with paired-end 100 bp reads using the TruSeq Cluster Kit v3
(Illumina). Data were converted to fastq and aligned back to the
human genome assembly 19 with the STAR split-read aligner.
RNAeQC was used to analyze data quality (23). The Binary
Sequence Alignment Map files are deposited and available
from the National Center for Biotechnology Information
(NCBI) Sequence Read Archive (https://www.ncbi.nlm.nih.gov/
bioproject/PRJNA433861).

Read alignment, and determination of composite gene and
isoform transcript expression levels

Reads were aligned to the hg19 genome using the STAR aligner.
Aligned reads were used to compute gene and isoform expression
using cufflinks (version 2.2.1; ref. 24). Gene and isoform positions
were downloaded from the UCSC Table Browser "refGene" table
from the "RefSeq Genes" track downloaded on August 11, 2016
(https://genome.ucsc.edu/cgi-bin/hgTables). We used the lower
confidence limit calculated by cufflinks for expression of each
gene in each cell line to detect expressions not significantly above
zero. Expression values with lower confidence limit equal to zero
were set to zero. Values for both the composite and isoform
transcript levels are presented as fragments per kilobase per
million reads (FPKM). For 642 genes with multiple locations on
the genome, we selected those locations that were present in the
NCBI RefSeq GRCh37 annotation. Both the composite and iso-
form transcript expression levels are available for download at
"CellMiner\Download Data Sets\Download Processed Data Set
\RNA: RNA-seq." The CellMiner url is https://discover.nci.nih.
gov/cellminer.

Data comparisons and visualizations
For all molecular data comparisons described below, the raw

RNA sequencing (RNA-seq) expression levels (Supplementary
Table S1) were scaled logarithmically (log2) following addition
of 0.1 to each data point, as log2(0) is undefined. For comparison
with four other forms of molecular data, the RNA-seq genes were
filtered tohave aminimumof two cell lineswith FPKMvalues!1.
This molecular data used for comparison may be downloaded
from "CellMiner\DownloadData Sets" and includes (i) transcript
microarray expression levels from "RNA:5 Platform Gene Tran-
script\z scores" used as log2 values, (ii) DNA copy numbers from
"Combined aCGH\gene summary", (iii) DNA methylation data
from "Illumina 450k methylation\Gene average", and (iv) pro-
tein expression data from "SWATH (Mass spectrometry)\Pro-
tein" (25). The normalizations of each of these data sets have
been previously described (12, 25–27).

The array comparative genomic hybridization (aCGH) data
with total ranges greater than or equal to 1.15 (i.e., `max copy
number' – `min copy number'! 1.15) were used, as this removes
genes without copy-number change. Genes without copy-
number change will not have an influence on transcript level.
Throughout the article, Pearson correlation coefficients and
P values were calculated, and the density plots and bar graphs
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generated using R computing unless otherwise designated (http://
www.r-project.org).

CellMinerCDB databases
The cell line sets included in CellMiner Cross-Data-Base (CDB)

currently are the National Cancer Institute 60 (NCI-60), Cancer
Cell Line Encyclopedia (CCLE), Genomics andDrug Sensitivity in
Cancer (GDSC), Cancer Therapeutics Response Portal (CTRP),
Developmental Therapeutics Program Small Cell Lung Cancer
Project (DTP SCLC), and the NCI Almanac. The urls for each of
these are accessible through CellMinerCDB within Metadata by
clicking "Select here to learn more about. . ." for each Cell Line
Set (9). The CellMinerCDB url is https://discover.nci.nih.gov/
cellminercdb/.

Gene set enrichment analysis
A preranked gene set enrichment analysis (GSEA; http://soft

ware.broadinstitute.org/gsea/index.jsp) was run based on a gene
correlation score using the classic enrichment statistic with 1,000
permutations. For each gene, we calculated the correlation value
and P value between the total number of isoforms and the
composite transcript levels across the same cell lines. The gene
correlation score was defined as 1/P value (inverse of P value) for
positive correlation genes and -1/P value otherwise.

Quantitation of drug and compound activity levels
Drug activity levels expressed as 50% growth-inhibitory levels

(GI50) were determined by the DTP at 48 hours using the sulfor-
hodamine B assay (2). That data are passed through quality
control for repeat experiment consistency, a minimum range
!1.2 log10, and a minimum of 36 cell lines with activity values
as described previously, and as accessible within CellMiner (26).

MUC1 clinical trials and patient treatment based on specific
cancer molecular alterations

The MUC1 clinical trials url is https://clinicaltrials.gov/ct2/
results?cond¼&term¼muc1&cntry¼&state¼&city¼&dist¼.

Patient treatment based on specific cancer molecular altera-
tions urls are https://dctd.cancer.gov/majorinitiatives/NCI-
sponsored_trials_in_precision_medicine.htm, https://clinical
trials.gov/ct2/show/NCT01771458 and https://clinicaltrials.
gov/ct2/show/NCT01306045.

Results
RNA-seq comparison with microarray transcript expression in
the NCI-60

Composite transcript expression levels were determined
genome-wide by RNA-seq in the NCI-60 cell lines (23,826 genes
filtered after removal of duplicate genes; Supplementary Table
S1). For the purpose of global comparison with other data types,
genes were filtered to remove those with low levels of expression
(Materials and Methods). The resultant composite transcript
expression levels were compared with our microarray transcript
expression data to determine consistency between platforms and
assess reliability. The 14,572 selected genes in both forms of data
had strong correlations between RNA-seq and microarrays gene
expression, demonstrating both overall consistency between plat-
forms and reliability of theNCI-60 RNA-seq data (Supplementary
Fig. S1A). The mean of the corresponding Pearson correlations
was 0.64 (0.59 using Spearman), including 13,014 genes (89.3%)

with significant correlations (r! 0.33, P# 0.01; n¼ 60 cell lines).
Supplementary Fig. S2 shows microarray versus RNA-
seq expression scatter plots for nine representative genes (TP53,
CDKN2A, RB1, CCNE1, SLFN11, TOP1, BRCA1, TDP1, and
ERBB2). Similar and additional plots for any chosen gene can
be readily obtained at the CellMinerCDB.

Comparison of RNA-seq and microarray transcript expression
with other molecular data

Supplementary Fig. S1B–S1D compare both the composite
RNA-seq and microarray measurements of transcript expression
to other forms of biologically linked molecular data to both
compare and assess. Supplementary Fig. S1B compares the tran-
script measurements with aCGH measurements of DNA copy-
number change. Correlations are expected to be most positive for
those genes in which DNA copy-number alterations are domi-
nant, and less for those forwhich aCGHvariation is superseded by
other regulatory influences (27). This occurs, with mean Pearson
correlations of 0.28 and 0.32 (0.27 and 0.28 using Spearman) for
the RNA-seq–aCGH, and transcript microarray–aCGH data,
respectively.

Supplementary Fig. S1C compares the transcriptmeasurements
with DNA methylation levels. Correlations are expected to be
negative for those genes in which DNA methylation is influen-
tial (12). This occurs, with mean Pearson correlations of $0.18
and$0.17 ($0.18 and$0.17 using Spearman), for the RNA-seq–
DNA methylation and transcript microarray–DNA methylation
data, respectively.

Supplementary Fig. S1D compares transcript measurements
with protein expression levels (28). Correlations are expected to
be positive for the subset of genes for which these parameters
coincide. This occurs, withmean Pearson correlations of 0.27 and
0.34 (0.29 and 0.35 using Spearman) for the RNA-seq–protein
expression and transcript microarray–protein expression data,
respectively.

Isoform expression levels and characterization
Structural variability of transcripts resulting in multiple iso-

forms for a given gene can occur for multiple reasons including
variable start or stop sites, splicing variation, gene fusions, nucle-
otide insertions and deletions, or genes that appear in multiple
locations. Further assessment of the same genes presented in
Supplementary Table S1 yielded transcript expression levels for
a total of 46,834 gene isoforms. Expression levels for all cell lines
are presented in Supplementary Table S2. In this table, the
"Transcript" reference sequences define the transcripts. Also
included are the "Mean abundance ratio," the proportion of that
gene transcript expressed as that isoform, and the transcript start
and stop sites. The protein reference sequences, number of amino
acids per isoform, and chromosome number are also indicated.

Data access using the CellMiner and CellMinerCDB web-
based applications

The RNA-seq data are available both through CellMiner and
CellMinerCDB, each of which has complementary content and
functions. Details are provided within the respective web applica-
tions and outlined in Fig. 1.

CellMiner provides the RNA-seq data for the NCI-60 cancer cell
lines in multiple formats (Fig. 2). The "Download Data Sets" tab
illustrated in Fig. 2A allows one to download the entire composite
gene (Supplementary Table S1) or isoform (Supplementary

Reinhold et al.

Cancer Res; 79(13) July 1, 2019 Cancer Research3516

on August 14, 2019. © 2019 American Association for Cancer Research. cancerres.aacrjournals.org Downloaded from 

Published OnlineFirst May 21, 2019; DOI: 10.1158/0008-5472.CAN-18-2047 

http://www.r-project.org
http://www.r-project.org
https://discover.nci.nih.gov/cellminercdb/
https://discover.nci.nih.gov/cellminercdb/
http://software.broadinstitute.org/gsea/index.jsp
http://software.broadinstitute.org/gsea/index.jsp
https://clinicaltrials.gov/ct2/results?cond=&term=muc1&cntry=&state=&city=&dist=
https://clinicaltrials.gov/ct2/results?cond=&term=muc1&cntry=&state=&city=&dist=
https://clinicaltrials.gov/ct2/results?cond=&term=muc1&cntry=&state=&city=&dist=
https://clinicaltrials.gov/ct2/results?cond=&term=muc1&cntry=&state=&city=&dist=
https://clinicaltrials.gov/ct2/results?cond=&term=muc1&cntry=&state=&city=&dist=
https://clinicaltrials.gov/ct2/results?cond=&term=muc1&cntry=&state=&city=&dist=
https://clinicaltrials.gov/ct2/results?cond=&term=muc1&cntry=&state=&city=&dist=
https://clinicaltrials.gov/ct2/results?cond=&term=muc1&cntry=&state=&city=&dist=
https://dctd.cancer.gov/majorinitiatives/NCI-sponsored_trials_in_precision_medicine.htm
https://dctd.cancer.gov/majorinitiatives/NCI-sponsored_trials_in_precision_medicine.htm
https://clinicaltrials.gov/ct2/show/NCT01771458
https://clinicaltrials.gov/ct2/show/NCT01771458
https://clinicaltrials.gov/ct2/show/NCT01306045
https://clinicaltrials.gov/ct2/show/NCT01306045
http://cancerres.aacrjournals.org/


Table S2) expression data as tables. The "Query Genomic Data"
tab in Fig. 2B provides access to subsets of that same data,
queryable by gene name, Entrez Gene identifier,mRNAor protein
RefSeq, chromosome, or genomic location. The "NCI-60 Analysis
Tools" tab in Fig. 2C provides three additional outputs. "Cell line
signature\RNA-seq gene expression values" provides the compos-
ite transcript expression levels for a gene (Supplementary
Table S1), as well as isoform transcript expression levels for that
gene (Supplementary Table S2). "Pattern comparison" compares
any input pattern with the patterns of approximately 21,766
compound activities, approximately 103,881 molecular para-
meters (including the composite RNA-seq transcript expression
levels)with approximately 49phenotypic indicators andprovides
their correlations and P values. "Drug vs. gene variant/isoforms"
is an expansion of the preexisting "Drug vs. gene variant" tool
that provides a comparison between the activity of a chosen
compound and the DNA variants of a chosen gene, now updated
to include isoform transcript expression level comparisons
(to the same drug activity). Figure 2D exemplifies cell line signa-
ture snapshots from the CellMiner website for androgen receptor
(AR) transcript levels as measured by both RNA-seq and
microarray.

The recently introduced CellMinerCDB (cross-database; ref. 9)
provides both additional functionality and access to additional
cell line sets (the CCLE, GDSC, CTRP, SCLC, and the NCI

Almanac). The cell line sets and data types included have under-
gone identifier matching to allow comparisons. The Univariant
Analysis\Plot Data tab generates interactive scatter plots
(Fig. 3). Figure 3A and B exemplify the gene AR for transcript
levels as measured by RNA-seq and microarray from the NCI-
60 (A) and the CCLE (B). Figure 3C andD visualize the gene TP53
for transcript levels asmeasured by RNA-seq from theNCI-60 and
the CCLE (C), and RNA-seq from the NCI-60 and microarray for
CCLE (D). Figure 3E and F visualize the gene CDH1
(E-cadherin) RNA-seq versus DNA methylation from the NCI-
60 (E) and CCLE (F). In all cases, the scatter plots demonstrate
consistency between platforms, institutions, andmost important-
ly cell lines.

Isoform expression, characterization, implications, and
functional category enrichment

Figure 4A shows that the number of isoforms per gene (Sup-
plementary Table S2) varies widely across genes; most genes
expressed a single isoform, whereas the histone H3K27me3
demethylase UTY (Ubiquitously Transcribed Tetratricopeptide
Repeat Containing, Y-Linked) gene encoded on the
Y-chromosome expressed 45 isoforms. The MUC1 gene has 18
isoforms, with its 2 most abundant forms having mean abun-
dance ratios of 0.42 and 0.46 (Supplementary Table S2). Both are
truncated from the reference full-length MUC1 gene coding for a

CellMiner Cross Database (CDB)
(https://discover.nci.nih.gov/cellminercdb/)

CellMiner
(https://discover.nci.nih.gov/cellminer/)

Other web applications
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Figure 1.
Schematic of the genomics and pharmacology web applications, including their urls, cell line sets, and functionalities.
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Figure 2.
CellMiner output types. A, The CellMiner Download Data Sets tab and the two forms of RNA-seq data available. B, The CellMiner Query Genomic Data tab and the
two forms of RNA-seq data it makes available. C, The CellMiner NCI-60 Analysis Tools tab and the three tools providing RNA-seq data and/or its relationships to
other parameters. D, Exemplary CellMiner cell line signature outputs for AR transcript expression as measured by RNA-seq (log2 FPKMþ 0.1) and microarray z
score on the x axis, with cell lines on the y axis.

Reinhold et al.

Cancer Res; 79(13) July 1, 2019 Cancer Research3518

on August 14, 2019. © 2019 American Association for Cancer Research. cancerres.aacrjournals.org Downloaded from 

Published OnlineFirst May 21, 2019; DOI: 10.1158/0008-5472.CAN-18-2047 

http://cancerres.aacrjournals.org/


1,255 polypeptide (tumor-associated epithelial membrane anti-
gen expressed in epithelial cells) and code for polypeptides 475
and 484 amino acids in length.

The number of isoforms per cell line was also found to vary
(Fig. 4B). Variation in the number of bases sequenced per cell line
had minimal contribution to this variation (&8%), suggesting

biological source. As RNA processing genes affect isoforms, we
checked for significant correlations between the composite tran-
script expression levels (Supplementary Table S1) of several core
RNA processing genes and the number of isoforms pattern
(Fig. 4B) using our Pattern comparison tool (26). Significant
(P < 0.002) correlations were found for core RNA processing
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genes including CDK12, DDX5, NONO, PPP2R1A, SF3B1, and
ZRSR2. An additional comparison was done at the omic level
using preranked GSEA on the P values from that same Pattern
comparison analysis. RNA processing gene sets were found to be
significantly enriched (Table 1). The enriched gene sets (Table 1)
all fall within the top 4%and have false discovery q values < 3.5E–
07. These results reveal the potential impact of RNA processing
genes on the number of gene isoforms determined by RNA-seq of
the NCI-60.

As isoforms may affect cancer progression and/or pharmaco-
logic response, we checked for genes that affect these processes
and have isoforms that lead to altered numbers of amino acids.
Multiple examples were found. These include the oncogenes
ABL1, ERBB2, HRAS, and PIK3CB; the tumor suppressors APC,
BRCA1, E2F3, PTEN, TSC1, and VHL; the DNA-damage response
genes PARP2, RAD51, and XRCC6; the chromatin-affecting genes
SIRT2, SMARCB1, and KDM5C; the tumor drivers ABI1, CCND3,
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Table 1. Enriched categories with significant correlation between the total
isoform number pattern (Fig. 3B) and their composite transcript expression
levels (Supplementary Table S1)a

RNA processing gene sets
Gene group
size

Enrichment
score NESb

GO_MRNA_PROCESSING 409 0.45 10.45
GO_RNA_SPLICING 348 0.46 9.84
REACTOME_MRNA_PROCESSING 153 0.55 7.77
GO_SPLICEOSOMAL_COMPLEX 162 0.50 7.27
REACTOME_MRNA_SPLICING 104 0.55 6.47
KEGG_SPLICEOSOME 123 0.49 6.43
aCategories identified using GSEA (23). The input was P values for correlations
between gene composite expression levels (Supplementary Table S1), and the
isoform numbers per cell line pattern (Fig. 3B). The upper filter was set at 510.
There were 11,173 gene sets with positive and 3,048 with negative correlations.
All Table 1 gene sets have FDR q values < 3.5E-07, fall within the top 4% of gene
sets, and have positive correlations.
bNormalized enrichment score after permutations.
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MITF,MYH11, PPARG, PRDM1, andRALGDS; and the apoptosis-
affecting genes CASP1, 2, 5, 6, 7, 8, and 9, BIRC2, 5, and 7, BCL2,
BCL2L1, DAP, and DAP3.

Isoforms and pharmacologic response
Significant correlation was found between the number of iso-

forms pattern (Fig. 4B) and the drug responses for only 2 of 201
FDA-approved or clinical trial drugs, mithramycin and vorinostat
(r ¼ $0.332, P ¼ 009 and r ¼ 0.336, P ¼ 0.010, respectively).
Mithramycin's negative correlation indicates reduced activity in
the presence of increased numbers of isoforms, and vorinostat's
positive correlation the opposite.

Table 2 exemplifies gene–drug comparisons for which the gene
isoforms (Supplementary Table S2) provided improved predict-
ability as compared with the composite expression (Supplemen-
tary Table S1). In each of these examples, we required (i) that the
isoforms resulted in truncated proteins, (ii) a minimum isoform
abundance of 10% of the total, and (iii) that the gene had known
biological link to the drugs mechanisms of action. These links are
direct for BCR-imatinib (the drug targets BCR-ABL tyrosine
kinase), ALKBH2-benzaldhyde (a DNA alkylation repair protein
and an alkylating agent), both CDK1 and CDK20-palbociclib
(the drug targets CDKs), and FGFR3-pazopanib (the drug
targets FGFRs). The link is through molecular pathway for
AKT3-vandetanib and MAPK10-AZD-9291 (two genes in
the EGFR pathway and two EGFR inhibitors). The links are
functional for CASP1-imexon, CASP8-arsenic trioxide and
API5-dasatinib (three apoptosis or survival genes and three apo-
ptosis-affecting drugs), both POLD3-ifosfamide and DDX11-
bendamustine (two DNA-damage repair genes and two DNA-
damaging drugs), and PDPK1-7hydroxystaurosporine (a protein
kinase and a kinase-affecting drug). The link is through prior
literature for MAPK8-oxaliplatin form (29).

Discussion
Working with the NCI-60 data in CellMiner enables access to

multiple forms of molecular data in easy-to-compare formats for
casual and experienced users. Supplementary Fig. S1 provides
examples of this, comparing RNA-seq composite transcript
expression data with four other relevant molecular data types.
A brief description of data accession is given in association
with Fig. 2, with full documentation provided within CellMiner.

Supplementary Fig. S1A compares RNA-seq and microarray
transcript data, demonstrating concordance between the two.
Identical genes exhibit high correlations and positive association
with variance in both microarray and RNA-seq, with higher
variance associated with higher correlation. Supplementary Fig.
S1B–S1D compare RNA-seq and transcript microarray data with
aCGH, DNA methylation, and protein expression and reveal
largely concordant results for the two forms of transcript data
with amorewell-separated bimodal distribution for the transcript
microarray comparisons with the aCGH. Use of Spearman as
opposed to Pearson correlations is largely concordant, highlight-
ing data reliability and the fact that correlations are not driven by
outliers. Existing variability between the RNA-seq and transcript
microarray data is likely due to a combination of both the intrinsic
difference in the two data forms (hybridization vs. sequence
counting), as well as their handling. The transcript microarray
data are a combination of five microarrays that have undergone
quality control that minimize the influence of variable
isoforms (26).

Characterization of isoform expression levels in the NCI-60 in
Supplementary Table S2demonstratesmultiple types of transcript
variability, including (i) the number of isoforms per gene
(Fig. 4A), (ii) individual isoform abundance levels by cell, (iii)
isoform abundance summed across the NCI-60 (the mean

Table 2. Isoform expression–drug activity pairs with enhanced correlations to isoforms as compared with composite gene expression

Gene Transcript Protein Drug
Gene expression vs.
drug activity P valuesi

Namesa Typeb RefSeqc Abundanced Amino acidse Drug namef NSCg Mech.(s) of actionh Isoform Composite
BCR GTPase-activating NM_021574 0.13 1227/1271 Imatinib 743414 BCR-ABL|PK:YK 0.00001 0.2036
CASP1 Apoptotic NM_001257119 0.216 383/404 Imexon 714597 Apo 0.00005 0.00201
CASP8 Apoptotic NM_001080124 0.151 464/479 Arsenic trioxide 92859 Apo 0.00092 0.74096
MAPK8 Apoptotic NM_001278548 0.277 308/427 Oxaliplatin 266046 AlkAg 0.00002 0.04352
API5 Survival NM_006595 0.290 504/524 Dasatinib 759877 PK:YK,PDGFR,KIT 0.00010 0.34951
ALKBH2 DDR NM_001001655 0.200 157/261 Benzaldehyde (BEN) 281612 AlkAg 0.00104 0.32629
DDX11 DDR NM_004399 0.160 856/970 Bendamustine 138783 AlkAg 0.00313 0.41420
POLD3 DDR NR_046409 0.122 na Ifosfamide 109724 AlkAg 0.00002 0.04390
CDK1 Protein kinase NM_033379 0.088 240/297 Palbociclib 758247 PK:STK,CDK 0.00010 0.01554
CDK20 Protein kinase NM_001039803 0.229 346/346 Palbociclib 758247 PK:STK,CDK 0.00001 0.00206
AKT3 Protein kinase NM_001206729 0.099 465/479 Vandetanib 760766 PK:YK,EGFR 0.00056 0.20447
PDPK1 Protein kinase NM_031268 0.360 429/556 7-Hydroxystaur. 638646 PK:STK 0.00225 0.39567
MAPK10 Protein kinase NM_002753 0.490 422/464 AZD-9291 779217 PK:EGFR 0.00005 0.01349
FGFR3 Signaling NM_022965 0.253 694/806 Pazopanib 752782 PK:YK,PDGFR,FGFR 0.00003 0.00780
aGene name as defined by the UCSC Table Browser at https://genome.ucsc.edu/cgi-bin/hgTables.
bDDR, DNA damage repair. Genes may fall into additional functional categories.
cTranscript reference sequence as defined by NCBI at http://www.ncbi.nlm.nih.gov/nucleotide.
dAbundance of isoform as compared with other isoforms for the same gene.
eNumber of amino acids in protein.
fAll drugs are either FDA approved or in clinical trial. 7-Hydroxystaur., 7-Hydroxystaurosporine.
gCancer Chemotherapy National Service Center (NSC) number.
hMech., mechanism., Apo, apoptosis inducer. AlkAg, alkylating agent. PK, protein kinase inhibitor. YK, tyrosine kinase inhibitor. PDGFR, PDGFR inhibitor. KIT, KIT
inhibitor. STK, serine threonine kinase inhibitor. CDK, CDK inhibitor. EGFR, EGFR inhibitor. PDGFR, PDGFR inhibitor. FGFR, FGFR inhibitor.
iCalculated from Pearson' correlations. The FPKM values for both composite gene and isoform expression were log2 transformed to make appropriate comparison
with the log10-transformed drug activity data.
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abundance ratio values from column 3 of Supplementary
Table S2), (iv) total number of isoforms per cell (Fig. 4B), and
(v) number of amino acids present in isoforms of individual genes
(column 7 of Supplementary Table S2). Thus, both the expression
and functional landscapes become more complex when consid-
ering RNA-seq isoform levels. This also may have translational
implication, as exemplified by the MUC1 isoform variability.
Cancer cells expressing MUC1 are currently targeted in clinical
trials inwhich its 20 amino acid variable number tandem repeat is
used to elicit immune response. As the number of these repeats
occurring in normal individuals is felt to vary from approximately
20 to120 times and the forms expressed in all theNCI-60 cell lines
have only one full-length repeat (a reduction that could easily
affect immune response), determination of repeat number of a
patients expressed isoform would seem a desirable biomarker for
patients enrolling in these trials.

The ability to test consistency across platforms, as exemplified
using CellMiner in Supplementary Fig. S1A–S1D, as well as across
both platforms and institutes, as tested using CellMinerCDB
in Fig. 3A–F, provides quality control that gives the user confi-
dence when results match. The ability to compare different cell
line sets using CellMinerCDB allows users to easily make com-
parisons between data that only exist in one of the cell line sets, as
in the comparison (Fig. 3F) of CCLE RNA-seq and GDSC DNA
methylation data for CDH1 (9).

The pattern of the total number of isoforms per cell line
visualized in Fig. 4B provides a functionalmeasurement of overall
RNA processing activity across cell lines. Comparison of the
pattern of these isoforms with the composite transcript expres-
sions (Supplementary Table S2) shows significant correlation to
multiple core RNA processing genes that have previously been
recognized in human malignancies leading to splicing altera-
tions (15, 30). This, in addition to the enrichment of RNA
processing gene sets demonstrated in Table 1, provides a putative
transcript regulatory explanation for the observed isoform vari-
ation across cell lines.

The genes we list in results with isoform variability that might
affect cancer progression and/or pharmacologic response high-
light the potential widespread effects of isoform variations. From
ourNCI-60 RNA-seq analyses, we identified specific tumor drivers
reported to have isoform variation resulting in altered protein
products in cancer including ABI1, CCND3, MITF, MYH11,
PPARG, PRDM1, and RALGDS (31). Chromatin factors and
apoptosis genes are known to have altered transcripts in
cancer (15, 30, 32–34). Splicing alterations in cancer have also
previously been reported in oncogenes, and genes involved in
proliferation, invasion, DNA repair, DNA damage, and drug
resistance (30, 31, 33, 35).

The concept of RNA splicing dysregulation in refractory cancers
has been proposed as an avenue for therapy (33). That just two
FDA-approved drugs showed significant correlations to the num-
ber of isoforms per cell line pattern, mithramycin (a DNA alkylat-
ing agent and RNA synthesis inhibitor) and vorinostat (an HDAC
inhibitor), is not surprising in the statistical context, as the
employed P value of 0.01 would predict that number of drugs
by chance. However, pharmacologically, it is plausible it is a
reflection that the current FDA-approved and clinical trial drugs
for which we have data were not designed to affect overall RNA
processing and are unlikely to act selectively in that capacity.
Potentially more valuable in this context, if they are screened, will
be the anticancer splicing modulators (36, 37).

When we considered individual genes with isoform altera-
tions known to be associated to drug response, some notable
correlations were found. Table 2 provides examples of isoforms
with significant correlation to biologically linked pharmaco-
logic responses. In these examples, the isoform provides a more
predictive indicator of pharmacologic response than the com-
posite gene expression. MAPK8 is included as its isoforms have
previously been proposed to affect oxaliplatin response (29).
Taken into consideration with the previously reported inter-
relationships between RNA processing alterations, cancer, and
pharmacology, these results emphasize the need for consider-
ation of isoforms in addition to composite expression when
mining biomarkers for use in making pharmacologic predic-
tion. Additional study will be required to determine the influ-
ence of the multiple factors that may affect reliability of this
sort of analysis, such as data pipeline employed, abundance of
transcript, abundance of isoform, number of isoforms per gene,
variability of pattern for these parameters, and depth of
sequence reads.

The transcription factor AR has perhaps the most intensively
studied and clinically relevant cancer-related isoforms (38, 39).
Multiple forms of these splicing variants (AR-Vs) bind DNA,
activating programs of gene expression distinguishable from
that of full-length AR (AR-FL; ref. 40). AR-V7, the most well
characterized of these, has been shown to (i) bind DNA, (ii)
retain its N-terminal transactivation domain, (iii) delete its
C-terminal ligand-binding domain, (iv) result in a constitutively
active, ligand-independent transcription factor, (v) be associated
with prior AR-targeted therapy, (vi) be predictive of resistance to
abiraterone and enzalutamide in castration-resistant prostate
cancer, and (vii) be prognostic (38). AR-V4 dimerizes with
both full-length and V7 forms of AR andmitigates enzalutamide's
inhibition of full-length AR (41). The NCI-60 cells express
AR-FL, AR-V7, and AR-V4 (NM000044, NM001348063, and
NM001348063, respectively), along with twomore severely trun-
cated versions (Supplementary Table S2). AR-FL and AR-V7 are
both expressed in 18 cell lines, with AR-V7 expressed at lower
levels, consistent with prior reports (39). All nine NCI-60 tissue-
of-origin types are positive for expression of AR-V4, V7, and/or
full-length AR. This broad-based expression of multiple forms
of AR supports the current interest in AR as a drug target or
prognostic indicator for nonprostatic indications (38, 42, 43).
Clinically, AR variants are detectable either in circulating
tumor cells or by digital mRNA analysis platforms usable in
fresh, frozen, or formalin-fixed paraffin-embedded tissue,
and they have been shown to be predictive of resistance to
AR-targeted therapy (38, 42, 44). Although additional clarifica-
tion is required, theAR experience inprostate cancer demonstrates
that analysis of variant isoforms can and should be done to
facilitate a precisionmedicine approach to therapy (42, 45). These
same approaches may be applied to other genes known to
have either cancer or pharmacologic importance, and isoform
variability.

Currently, the attempt is being made to provide patient
treatment with greater consideration of their specific cancer's
molecular alterations, primarily using DNA mutational
changes and occasionally expression level as biomarkers. As
demonstrated in our genome-wide study of the NCI-60, cancer
cells contain multiple functionally relevant isoforms, includ-
ing pharmacologically important genes. As many of these
isoforms have substantial amino acid losses, it is probable
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that their functional effect is as important as DNA mutational
changes. In addition, isoform alterations can be expected to
have cumulative effects for those cancers with increased levels
of RNA processing instability. Isoform variability should be
considered going forward when analyzing and interpreting
RNA-seq data in clinical samples, and potentially for looking
for biomarkers of both cancer progression and pharmacologic
intervention.
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