
Translational Oncology 13 (2020) 100830

Contents lists available at ScienceDirect

Translational Oncology

j ourna l homepage: www.e lsev ie r .com/ locate / t ranon
Original Research
Candidate biomarker assessment for pharmacological response
William C. Reinhold a,⁎, Fathi Elloumi a,c, Sudhir Varma a,b, Jacques Robert d, Gordon B. Mills e, Yves Pommier a
a Developmental Therapeutic Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
b HiThru Analytics LLC, Laurel, MD, USA
c General Dynamics Information Technology, Falls Church, VA 22042, United States of America
d Inserm unité 1218, Université de Bordeaux, France
e Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, United States of America
⁎ Corresponding author at: National Cancer Institute, 900
E-mail address: wcr@mail.nih.gov. (W.C. Reinhold).

http://dx.doi.org/10.1016/j.tranon.2020.100830
1936-5233/© 2020 Published by Elsevier Inc. on beh
licenses/by-nc-nd/4.0/).
A B S T R A C T
A R T I C L E I N F O
Article history:
Received 26 March 2020
Received in revised form 23 June 2020
Accepted 26 June 2020
Available online xxxx
Using the information from our CellMiner (https://discover.nci.nih.gov/cellminer/) and CellMinerCDB (https://
discover.nci.nih.gov/cellminercdb/) web-based applications, we identified 3978 molecular events with signifi-
cant links to pharmacological response for genes that are either targets, biomarkers, or have established causal
linkage to drugs. Molecular events included DNA copy number, methylation and mutation; and transcript; and
whole or phospho-protein expression for the NCI-60 human cancer cell lines. While all forms of molecular
data were informative in some (gene-drug) pairings, the type of significantly linked molecular events was
found to vary widely by drug. Some forms of molecular data were found to have more frequent significant cor-
relation than others. Leading were phosphoproteins as measured by antibody (31%), followed by transcript as
measured by microarray (16%), and total protein levels as measured by mass spectrometry or antibody (14%).
All other measurements ranged between 5 and 11%. Data reliability was underscored by concordant results
when using differing drugs with the same targets, as well as different measurements of the same molecular pa-
rameter. The significance of correlations of the various molecular parameters to the pharmacological responses
provides functional indication of those parameters that are biologically relevant for each gene-drug pairing, as
well as comparisons between measurement types.
Introduction
The recognition of predictive biomarkers for pharmacological re-
sponse is of great interest in clinical applications. Biomarkers have
allowed the development of new treatment strategies, including those
based on the molecular profiles of tumors allowing matching of targeted
therapies with patients [1]. However, for any target gene of interest,
there are many molecular features that might be predictive. Currently,
DNA mutations are the favored biomarker due to their relative ease of
access, purification, stability and assessment. In order to assess bio-
marker potential for specific drugs across multiple molecular features
of their known biomarkers (such as BRAF for vemurafenib), targets
(such as EGFR for afatinib, or TOP1 for topotecan) or causally linked
genes (such as SLFN11 for topotecan, etoposide, cisplatin, gemcitabine,
cytarabine or mitoxantrone), we systematically reviewed the drugs for
significant association to molecular features of those genes using the
deep NCI-60 cell line screen information.
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Materials and methods

CellMiner datasets and comparisons

The National Cancer Institute 60 (NCI-60) cell line datasets used for this
studywere accessed in CellMiner and downloaded from theDownloadData
Sets tab\Download Processed Data set (https://discover.nci.nih.gov/
cellminer). The drug activities (growth inhibition 50%) were accessed
from Download Processed Data Set\Compound activity: DTP NCI-60. All
drug data were generated by the Developmental Therapeutics Program
(https://dtp.nci.nih.gov/). The activities of 129 drugs were evaluated.
The numbers of molecular markers measured by each molecular marker
platform were 23,232 for aCGH, 17,553 for DNA methylation, 12,706
amino acid changing variants, 9143 protein function-affecting variants,
25,040 transcripts as measured by microarray, 23,826 transcripts as mea-
sured by RNAseq, 3162 proteins asmeasured bymass spectrometry, 93 pro-
teins as measured by antibodies by NCI, and 347 proteins as measured by
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antibodies byMDAnderson (MDA). The exact CellMiner selectionsmade to
download each form of molecular data is detailed in Table 1 footnotes. p
values were determined from Pearson's correlation coefficients and were
calculated using R computing (https://www.r-project.org).

Results

Relationships between specific pharmacological response and molecular
alterations

We assessed molecular data for DNA copy number, methylation, amino
acid-affecting mutations, protein-function-affecting mutations, transcript
levels as assessed by microarray and RNAseq, total protein levels as
assessed by mass spectrometry and antibody, and phosphoprotein levels
as assessed by antibody for 167 genes compared to 128 FDA-approved or
clinical trial drug activities (Supplemental Table 1). This yielded 3978
drug-gene comparisons with direct linkage, i.e. the same gene that is a bio-
marker for, targeted by, or causally linked to a given drug is assessed for
change at the molecular level. Table 1 presents a subset of that data that ex-
hibit significant correlations between molecular and activity data.

Among well-documented connections, robust and significant mutation-
drug positive correlations were observed for BRAFV600E-vemurafenib and
dabrafenib. An additional small contribution to these drugs activity profiles
may be made by (BRAF) DNA copy number alteration. Also, SLFN11 tran-
script level was significantly positively correlated with carboplatin,
mitoxantrone, topotecan, gemcitabine, and melphalan activities (DNA-
damaging drugs of different types).

Multiple less known or novel relationships are detailed in Table 1 and/or
Supplemental Table 1, including the relative importance of the various mo-
lecular features for predicting response to each drug. Transcript expression
of ALK has significant positive correlations to multiple ALK inhibiting
drugs, including alectinib, AP-26113, crizotinib and LDK-378. Transcript
and/or protein expression of EGFR has significant positive correlations to
multiple EGFR inhibiting drugs, including afatinib, erlotinib, gefitinib and
lapatinib. Lapatinib, which inhibits ERBB2 as well, is also positively corre-
lated to ERBB2 transcript and protein expression. ESR1 protein and/or tran-
script expression are significantly positively correlated to the ESR1
inhibitors fulvestrant, raloxifene and tamoxifen. MAP2K1 (MEK1) phospho-
protein expression has significant positive correlations to several multi-
target MEK inhibitors, including cobimetinib, PD-98059, selumetinib and
trametinib. PRKCA (protein kinase C alpha) transcript and protein expression
both have significant positive correlation to the PRKCA inhibitors
midostaurin and staurosporine. TOP2A DNA copy number and transcript ex-
pression are correlated positively to the TOP2 inhibitors amonafide, daunoru-
bicin, doxorubicin, etoposide, idarubicin, mitoxantrone and teniposide.
TUBB6 has significant negative correlations to multiple tubulin affecting
drugs, including docetaxel, dolstatin 10, eribulin mesilate, ixabepilone, pacli-
taxel, vinblastine, and vinorelbine, for transcript and/or protein expression.

CellMinerCDB visualization and exploration of pharmacological-molecular
relationships

Our CellMinerCDB web-application provides a rapid, on-the-fly ability
to visualize and explore relationships between drugs, genomic and proteo-
mic parameters [2,3] (https://discover.nci.nih.gov/cellminercdb). Fig. 1
provides several examples taken as snapshots. Because each cell line is rep-
resented on the plots and data can be readily downloaded to Microsoft
Excel-compatible files, CellMinerCDB provides granularity and insight,
which is better displayed by scatter plots than simple correlation analyses.
It includes examples of the ability to visualize drug responses of cell lines
with molecular alterations of interest (Fig. 1A with the labeled cell lines
having the BRAF V600E mutation); clinically relevant response profiles to
a drug by cancer tissue(s) of origin (Fig. 1B and C); the plateauing of activity
values (Fig. 1D); the ability to compare drug response across variable tis-
sues of origin (Fig. 1E); and high correlation due to a single widely variant
cell line (Fig. 1F).
2

Fig. 1A visualizes the relationship between MAP2K1 phosphoprotein
(MEK) expression as measured by reverse-phase protein array (RPPA) and
theMAP2K1-inhibitor PD-98059. The labeled cell lines have BRAFmutated
at V600E and are the most responsive. The plateauing of the activity values
at the low end indicates that the sensitivity of those cell lines was outside
the assay range. Fig. 1B visualizes the significant positive correlation be-
tween ERBB2 protein expression and the activity of the ERBB2-inhibitor
lapatinib for the combined breast and lung cancer subset (chosen due to
their clinical relevance). Fig. 1C extends the Table 1 (positive correlation)
relationship between estrogen receptor ESR1 protein expression and the
ESR1-inhibitor fulvestrant for the breast cancer subset. The three non-
expressor/poor responders at the bottom left are all triple negative cell
lines. Both ESR1 transcript and protein phosphorylation at S118 were
also found to be predictive (by positive correlation) for fulvestrant activity
in the breast cancer cell lines. Fig. 1D visualizes the significant positive cor-
relation between TOP2A transcript expression and the TOP2 inhibitor
mitoxantrone. The plateauing of activity values at the high end indicates
those cell responses were outside of the assay range. Fig. 1E visualizes of
the significant positive correlation between PRKCA S657 phosphoprotein
(RPPA) expression and the PRKCA inhibitor midostaurin, revealing the
renal cancers as most responsive. Fig. 1F visualizes the positive correlation
between ALK and one of the four ALK-inhibitors for which it has significant
correlation. The high correlation is shown to be due to a single leukemic
cell line, SR.

Relationships between pharmacological response and classes of molecular
alterations

The forms of molecular information presented in Supplemental Table 1
were each assessed across all drug-gene pairs for which there was informa-
tion. Table 2 presents the synopsis of this analysis, including the percent
that were predictive with significant correlations for each molecular mea-
surement. DNA copy number andmethylation datawere predictive of phar-
macological response 10 and 9% of the time, respectively. Two approaches
of compiling the DNA mutation data demonstrated significant correlation
in 6 and 5% of cases tested. RNA transcript, either measured by microarray
or RNAseq performed better, at 16 and 11%, respectively. Total proteinwas
predictive for 14% of cases for both mass spectrometry and total protein as
measured by RPPA by either the NCI Genomics and Pharmacology Facility
or the M.D. Anderson Systems Biology Department [4,5] (https://
tcpaportal.org/mclp/#/). Strikingly, phospho-protein levels were the
most predictive at 31%.

Discussion

While there have been notable successes using DNA mutations as bio-
markers for pharmacological intervention, such as BRAF V600E for
vemurafenib, and EGFR L858R and G719X (primary, sensitizing), and
T790M (secondary, desensitizing) for EGFR inhibitors, it remains in
doubt thatmutational datawill be able to supply the broader indications re-
quired for a personalizedmedicine approach for most patients [6–8]. A key
goal of personalized medicine is to take full advantage of the many drugs
that have robust response in some proportion of patients or model systems
of a particular cancer type or subset [9]. Our studies indicate that assessing
expression levels of pharmacologically-linked genes, such as the SLFN11
transcript [10], will provide broader pharmacological insight than DNA
mutation alone. The detailed and systematic approach adopted in this
study provides both verification of known relationships, and novel insights
regarding the relation between specific drugs and their biomarkers, targets,
or causally linked genes.

Among previously known examples, the BRAF V600E mutation is a
well- established biomarker for vemurafenib and dabrafenib [6]. The
SLFN11 transcript-DNA damaging drug relationships are also well
established, although not yet employed as biomarkers [11–13]. ESR1 is a
clinical, diagnostic biomarker for fulvestrant, raloxifene, and tamoxifen
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Table 1
Pharmacological versus molecular relationships of directly or causally linked gene-drug pairs.

Drugb Drug and molecular
measurement
intersection

p values for gene's molecular measurement versus drug activity correlationsa

Names NSCc MOAd Genee Functionf DNA RNA Protein

Copy
#g

Methylationh Mut_AAi,j Mut_PFAi,k Microarrayl RNAseqm Mass
spec.n

Reverse phase protein array

DTPo Antibody targetp MDAq

Crizotinib 756645 PK: YK,
MET,
ALK

ALK Bio., Tar. 0.862 0.023 0.287 0.487 0.001 0.145 na NA NA NA

AP-26113 761191 PK: YK,
ALK,
EGFR

ALK Target 0.538 0.029 0.049 0.192 4.4E−05 0.260 na NA NA NA

Alectinib 764040 PK: YK,
PIK3,
ALK

ALK Bio., Tar. 0.285 0.016 0.131 0.639 1.7E−09 0.375 na NA NA NA

LDK-378 777193 PK: ALK ALK Target 0.842 0.002 0.256 0.894 1.5E−07 0.128 na NA NA NA
Vemurafenib 761431 PK: YK,

BRAF
BRAF Bio., Tar. 0.019 0.438 2.2E−21 6.1E−23 0.110 0.903 na NA BRAF_pS445 0.123

Dabrafenib 764134 PK:
BRAF

BRAF Bio., Tar. 0.049 0.569 6.4E−17 1.5E−17 0.101 0.646 na NA BRAF_pS445 0.220

Erlotinib 718781 PK: YK,
EGFR

EGFR Target 0.723 0.101 0.044 0.087 0.001 1.5E−04 0.252 NA EGFR 0.002

Erlotinib 718781 PK: YK,
EGFR

EGFR Target - - - - - - - - EGFR_pY1068 0.004

Erlotinib 718781 PK: YK,
EGFR

EGFR Target - - - - - - - - EGFR_pY1173 0.049

Lapatinib 727989 PK: YK,
EGFR,
ERBB2

EGFR Target 0.233 0.609 0.870 0.964 0.960 0.629 0.727 NA EGFR_pY1068 0.021

Afatinib 750691 PK: YK,
EGFR

EGFR Bio., Tar. 0.947 0.265 0.276 0.338 0.012 0.005 0.555 NA EGFR 0.027

Afatinib 750691 PK: YK,
EGFR

EGFR Bio., Tar. - - - - - - - - EGFR_pY1068 0.001

Gefitinib 759856 PK: YK,
EGFR

EGFR Bio., Tar. 0.806 0.356 0.673 0.263 0.023 0.014 0.138 NA EGFR 0.022

Lapatinib 745750 PK: YK,
EGFR,
ERBB2

ERBB2 Bio., Tar. 0.013 0.884 0.411 0.471 0.010 0.007 0.028 NA HER2:ERBB2 0.004

Fulvestrant 719276 Ho|
SERM

ESR1 Bio., Tar. 0.421 0.009 0.587 na 2.2E−14 7.1E−15 na 0.064 ESR1 1.7E−08

Fulvestrant 719276 Ho|
SERM

ESR1 Bio., Tar. - - - - - - - - ESR1_pS118 6.0E−07

Raloxifene 747974 Ho|
SERM

ESR1 Bio., Tar. 0.386 0.015 0.984 na 9.4E−05 3.9E−05 na 0.527 ESR1 0.002

Raloxifene 747974 Ho|
SERM

ESR1 Bio., Tar. - - - - - - - - ESR1_pS118 8.2E−06

Tamoxifen 180973 Ho|
SERM

ESR1 Bio., Tar. 0.627 0.361 0.769 na 0.145 0.146 na 0.113 ESR1_pS118 0.010

PD-98059 679828 PK: STK,
MAP2K1

MAP2K1 Target 0.611 0.797 0.350 0.350 0.513 0.520 0.604 0.881 MAP2K1_pS217S221 4.4E−08

Selumetinib 741078 PK: STK,
MAP2K1

MAP2K1 Target 0.383 0.954 0.348 0.348 0.951 0.978 0.770 0.802 MAP2K1_pS217S221 3.0E−07

Trametinib 758246 PK: STK,
MAP2K1

MAP2K1 Target 0.198 0.881 0.223 0.223 0.577 0.824 0.472 0.754 MAP2K1_pS217S221 0.001

Cobimetinib 768068 PK: STK,
MAP2K1

MAP2K1 Target 0.265 0.595 0.303 0.303 0.597 0.758 0.602 0.879 MAP2K1_pS217S221 1.1E−05

Staurosporine 618487 PK:
PRKCA

PRKCA Target 0.702 0.950 0.118 0.118 1.9E−05 5.7E−06 na 0.702 PRKCA 0.004

Staurosporine 618487 PK:
PRKCA

PRKCA Target - - - - - - - - PRKCA_pS657 1.9E−05

Midostaurin 656576 PK:
PRKCA,
STK

PRKCA Target 0.277 0.603 0.692 0.692 1.9E−04 1.4E−04 NA 0.296 PRKCA_pS657 1.2E−04

Midostaurin 656576 PK:
PRKCA,
STK

PRKCA Target - - - - - - - NA PRKCA 0.009

Carboplatin 241240 A7|
AlkAg

SLFN11 Causal 0.382 6.0E−06 0.717 NA 9.0E−06 0.001 NA NA NA NA

Mitoxantrone 301739 TOP2 SLFN11 Causal 0.164 0.010 0.141 na 4.4E−08 5.6E−05 na NA NA NA
Topotecan 609699 TOP1 SLFN11 Causal 0.133 2.6E−04 0.684 na 3.3E−13 1.9E−08 na NA NA NA
Gemcitabine 613327 Ds SLFN11 Causal 0.329 0.001 0.239 na 7.8E−10 4.7E−08 na NA NA NA
Melphalan 757098 A7|

AlkAg
SLFN11 Causal 0.550 4.7E−04 0.205 NA 1.2E−09 1.3E−05 NA NA NA NA

Amonafide 308847 TOP2 TOP2A Target 0.023 0.478 NA NA 0.112 0.015 NA NA NA NA

(continued on next page)
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Table 1 (continued)

Drugb Drug and molecular
measurement
intersection

p values for gene's molecular measurement versus drug activity correlationsa

Names NSCc MOAd Genee Functionf DNA RNA Protein

Copy
#g

Methylationh Mut_AAi,j Mut_PFAi,k Microarrayl RNAseqm Mass
spec.n

Reverse phase protein array

DTPo Antibody targetp MDAq

Daunorubicin 82151 TOP2 TOP2A Target 0.035 0.233 NA NA 0.002 0.229 NA NA NA NA
Doxorubicin 123127 TOP2 TOP2A Target 0.040 0.183 NA NA 0.004 0.767 NA NA NA NA
Etoposide 141540 TOP2 TOP2A Target 0.018 0.204 NA NA 0.001 0.283 NA NA NA NA
Idarubicin 256439 TOP2 TOP2A Target 0.001 0.128 NA NA 0.004 0.050 NA NA NA NA
Mitoxantrone 279836 TOP2 TOP2A Target 0.003 0.157 NA NA 8.3E−05 0.150 NA NA NA NA
Teniposide 122819 TOP2 TOP2A Target 0.021 0.442 NA NA 2.7E−04 0.334 NA NA NA NA
Docetaxel 628503 Tu|

Tu-stab
TUBB6 Target 0.118 0.413 0.912 0.912 0.050 0.140 0.554 NA NA NA

Dolastatin 10 376128 Tu TUBB6 Target 0.528 0.742 0.575 0.575 0.009 0.012 0.013 NA NA NA
Eribulin
mesilate

707389 Tu TUBB6 Target 0.947 0.252 0.064 0.064 0.003 0.001 0.005 NA NA NA

Ixabepilone 747973 Tu|
Tu-stab

TUBB6 Target 0.691 0.884 0.890 0.890 0.018 0.183 0.145 NA NA NA

Paclitaxel 125973 Tu|
Tu-stab

TUBB6 Target 0.809 0.598 0.039 0.039 0.003 0.004 0.018 NA NA NA

Vinblastine 90636 Tu|
Tu-frag

TUBB6 Target 0.767 0.244 0.517 0.517 0.003 0.002 0.026 NA NA NA

Vinorelbine 608210 Tu|
Tu-frag

TUBB6 Target 0.476 0.548 0.074 0.074 0.029 0.008 0.021 NA NA NA

PK (protein kinase), STK (Serine threonine kinase), or YK (tyrosine kinase), followed by a gene name indicates an inhibitor of that gene. For full MOA designation, see Sup-
plemental Table 1.

a p values from Pearson's correlations calculated for drug activity versus the specified molecular alteration, with significant values (≤0.05) in bold. DNA copy number is
from array comparative genomic hybridization (aCGH); Illumina DNA methylation is from Infinium HumanMethylation450; Mut_AA and Mut_PFA are from whole exome
sequencing (WES); RNAmicroarray is a 5 PlatformGene Transcript/Average; RNAseq is RNA sequencing from IlluminaHiSeq 2000; ProteinMass Spec is mass spectrometry;
reverse phase protein array asmeasured either atMDAnderson or the NCI. All CellMiner downloads are available at (https://discover.nci.nih.gov/cellminer/loadDownload.
do). “NA” is no data available. “-” is used in rows for which multiple antibodies exist, to avoid duplication of data in those rows.

b All drugs are either Food and Drug Administration approved or in clinical trial.
c NSC is National Service Center number.
d MOA ismechanism of action. AlkAg is alkylating agent. AM is anti-metabolite. Apo is apoptosis inducer. BCR-ABL is BCR-ABL inhibitor. Df is antifols. Ds is DNA synthesis

inhibitor. Ho is hormone. Hg-SMO is Hedgehog-Smoothen - B catenin. Mito is mitochondrial affecting. NonCan is non-cancer, SERM is selective estrogen receptor modulator.
TOP1 is topoisomerase 1 inhibitor. TOP2 is topoisomerase 2 inhibitor. Tu is tubulin affecting. Tu-stab is tubulin stabilizing. Tu-frag is tubulin fragmenting.

e Genes are both related to the drugs described in the first three columns, and are measured as described for columns six through fifteen.
f The genes relationship to the drug, as a target, biomarker as defined at https://www.fda.gov/drugs/science-research-drugs/table-pharmacogenomic-biomarkers-drug-

labeling, or has causal linkage. Bio., Tar. is biomarker and target.
g DNA copy number data downloaded from CellMiner\Download Data Sets\DNA:combined aCGH\gene summary.
h DNA methylation downloaded from CellMiner\Download Data Sets\Download Processed Data Sets\DNA:Illumina 450K methylation\gene_average.
i Mut_AA is amino acid changing mutations, including variants defined as missense, nonsense, splice-sense, frameshift, read-through, non-frameshift insertions or dele-

tions. Downloadable at CellMiner\Download Data Sets\Download Processed Data Sets\DNA:Exome Seq\AA changing.
j The relevantmutations in EGFR are at L858R andG719 (sensitizing), and T790M (desensitizing) for the EGFR targeting drugs. Thesemutations are not present, and so the

mutational results are presented as “na”.
k Mut_PFA are protein function affecting mutations. The variant criteria include those from the amino acid changing mutants (footnote i), absent from both the 1000

Genomes and ESP5400, and a sift score less than or equal to 0.05 or a polyphen score greater than or equal to 0.85. May be downloaded from CellMiner\Download Data Sets
\Download Processed Data Sets\DNA:Exome Seq\Protein function affecting.

l Microarray is the 5 platform transcript z-scores. May be downloaded from CellMiner\Download Data Sets\Download Processed Data Sets\RNA:5 Platform Gene Tran-
script\Average z scores.

m RNAseq is RNA sequencing data. Downloaded fromCellMiner. May be downloaded fromData Sets\Download Processed Data Sets\RNA:RNA-seq\composite expression.
n Mass spec ismass spectrometry asmeasured by SWATH.May be downloaded fromCellMiner\DownloadData Sets\Download ProcessedData Sets\Protein:SWATH (Mass

spectrometry\Protein.
o DTP antibody arrays. May be downloaded from CellMiner\Download Data Sets\Download Processed Data Sets\Protein:Lysate Array\log2.
p MD Anderson antibody arrays Identifiers, followed by colon, followed by the Gene Name. _p indicates a phosphorylation. For full names, see Supplementary Table 1.
q MD Anderson antibody arrays. May be downloaded from CellMiner\Download Data Sets\Download Processed Data Sets\Protein:Antibody Array\Protein.
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treatment of breast cancer [14]. The current study results are consistent
with all of these, providing support for the approach implemented herein.

Multiple examples from this study demonstrate novel, or a mix of novel
and known relationships with clinical context. For example, ALK (fre-
quently activated by gene rearrangement) positive metastatic non-small
cell lung cancer (NSCLC) patients are treated with alectinib. In the current
study, it is demonstrated that a lymphoma cell line (SR) overexpressing ALK
and harboring an activating ALK-NPM1 fusion has increased sensitivity to
the ALK-inhibiting alectinib (Fig. 1F). SR also has significant increased
4

sensitivity to the ALK-inhibiting NSCLC drugs AP-26113, crizotinib, and
LDK-378 (Supplemental Table 1) indicating a potential novel use for
these drugs [15,16].

The EGFR inhibitors afatinib, erlotinib, gefitinib, and lapatinib are used
clinically for lung cancer. Unfortunately, the clinically relevant EGFRmuta-
tions used as biomarkers for EGFR inhibitors are not present in these cell
lines. However, in their absence, EGFR expression as measured by tran-
script, total protein, and/or phosphoprotein are significantly (positively)
correlated to the four drug responses (Table 1). In the NSCLC subset,

https://www.fda.gov/drugs/science-research-drugs/table-pharmacogenomic-biomarkers-drug-labeling
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Fig. 1. Examples of CellMinerCDB univariate analyses. A. MAP2K1 phosphoprotein expression levels as measured by RPPA comparison to PD-98059 activity in the NCI-60.
The labeled cell lines all have the BRAF V600Emutation. B. ERBB2 (HER2) protein expression asmeasured by RPPA comparison to lapatinib activity in the combined NCI-60
breast and ovarian cell lines. C. ESR1 protein expression as measured by RPPA comparison to fulvestrant activity in the breast cell lines. ERALPHA is an identifier used by
MDA for ESR1. D. TOP2A transcript expression from microarray comparison to mitoxantrone drug activity in the NCI-60. E. PRKCA phosphoprotein expression levels as
measured by RPPA comparison to midostaurin activity in the NCI-60. F. ALK transcript expression from microarray comparison to alectinib activity in the NCI-60. In all
panels, the input parameters are shown on the left. Each dot is a NCI-60 cell line, with the color code defined by the legend on the right. Regression lines are included in
red. X- and y-axes, correlations (r) and p values are as defined within each panel. Exp. is microarray expression using z score, and act is drug activity using z scores from
the NCI/DTP. Pro is protein, RPPA is reverse phase protein array as done at M.D. Anderson. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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Table 2
Comparisons of molecular predictors of drugs to pharmacological response.a

Molecular measurementc Platformd Gene drug pairsb

Totale # significantf %

DNA copy number aCGH 654 65 9.9
DNA methylation Microarray 598 54 9.0
DNA mutation, AA changing WES 503 28 5.6
DNA mutation, Prot Fun Aff WES 416 21 5.0

RNA transcript Microarray 646 102 15.8
RNA transcript RNAseq 658 73 11.1

Protein Mass. spec. 222 31 14.0
Protein, total DTP RPPA 70 10 14.3
Protein, total (MDA) RPPA 133 18 13.5
Phosphoprotein (MDA) RPPA 78 24 30.8

RNAseq is RNA sequencing. Mass spect. is mass spectrometry.; RPPA is reverse
phase protein array.
See Table 1 footnotes a and f through o for details and source of data.

a See Supplemental Table 1 for detailed drug, target, and gene molecular alter-
ation information.

b Drug-gene pairs with direct linkage, that is genes targeted by or causally linked
to those drugs.

c AA is amino acids. Prot Fun Aff is protein function affecting. DTP is Develop-
mental Therapeutics Program.

d aCGH is array comparative genomic hybridization. WES is whole exome
sequencing.

e Total number of gene-drug pairs for that molecular measurement.
f Number of significant Pearson's correlations p ≤ 0.05, for drug activity versus

molecular alteration.
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EGFR phosphorylation at Y1068 is significantly positively correlated to re-
sponse of the same four drugs (p= 0.00029, 0.0047, 0.039 and 0.0059 re-
spectively). Lapatinib is also an ERBB2 inhibitor used to treat lung and
HER2 over-expressing breast cancer [17]. In the current study, ERBB2
total protein expression was found to be significantly positively correlated
to the combined breast and NSCLC cell lines, consistent with clinical appli-
cation (Fig. 1B). Of potential interest clinically, ovarian cell lines also dem-
onstrate significant positive correlations between lapatinib response and
HER2 expression as measured by transcript, total protein, or phosphopro-
tein (p = 0.035, 0.034, and 0.016 respectively), providing candidate bio-
markers for ovarian cancers. As prior ovarian clinical trials have failed,
improved recognition of responsive sub-populations is desirable [18].
MEK inhibitors are being used or tried clinically for the treatment of mela-
noma, NSCLC and thyroid cancer, oftentimes as a complement to
vemurafenib when BRAF is mutated.

In the current study, MAP2K1 (MEK1) phosphoprotein is significantly
(positively) correlated to the pharmacological response of four MEK inhib-
itors, cobimetinib, PD-98059, selumetinib, and trametinib (Table 1), pri-
marily driven by the presence of the BRAF V600E mutation. BRAF
V600E, an FDA-approved biomarker for trametinib, is reported here to
serve the same purpose for PD-98059 (Fig. 1A, p = 4.4 × 10−8)
selumetinib and trametinib (p = 3.0 × 10−7 and 6.2 × 10−4, respec-
tively) [19]. Selumetinib and trametinib activity are also both found to be
significantly positively correlated to the MAP2K1 pS217S221 phosphopro-
tein in breast (p= 5.6× 10−4 and 6.6× 10−3, respectively), with the un-
usual feature of the triple negative cell lines beingmore responsive than the
estrogen positive cell lines, providing a rationale for testing the clinical util-
ity for these drugs.

Midostaurin is a clinical trial drug for acute myeloid leukemia that in-
hibits PRKCA (among other kinases). PRKCA transcript and protein phos-
phorylation expression are shown to be significantly (positively)
correlated to response (Table 1). The renal cancers are the best responders
to midostaurin (Fig. 1E), with significant positive correlations to transcript
levels also found for breast (p = 0.045), identifying additional potential
applications.

TOP2 inhibitors are currently used clinically for multiple cancers. In the
current study, TOP2A DNA copy number and transcript expression are
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shown to have significant (positive) correlation to seven TOP2 inhibitors,
amonafide, daunorubicin, doxorubicin, etoposide, idarubicin, mitoxantrone,
and teniposide (Table 1). TOP2A is not currently a biomarker for these
drugs, but its implementation as such may improve patient response predict-
ability. Tubulin-affecting drugs are currently used across a broad spectrum of
cancers. In the current study, TUBB6 expression as measured by microarray,
RNAseq, and/or mass spectrometry have significant negative correlation to
the tubulin-affecting drugs docetaxel, dolstatin 10, epothilone B, eribulin
mesilate, ixabepilone, paclitaxel, vinblastine, vincristine, and vinorelbine
(Table 1). Negative correlations show that as the tubulin expression increases,
the drug activities decrease. TUBB6 is not currently a biomarker for any of
these tubulin-affecting drugs but may be a candidate.

Table 2 provides an overview comparison of predictors of pharmacolog-
ical response. As the clinical community currently uses DNA mutation as
their primary form of biomarker, it is of note that in this comparison,
DNA mutation was the worst performer. DNA copy number and methyla-
tion both were somewhat better, suggesting a potentially expanded role
for their measurements. RNA transcript and total protein expression were
both more predictive (than DNA copy number and methylation), arguing
for their increased application as well. SLFN11, with its broad applicability
for themanyworkhorse DNA-damaging chemotherapies, is at the top of the
list as a candidate biomarker among RNA transcripts. The mass spectrome-
try measurements appear to also have potential, especially as more genes
become assessable due to technical advancement. However, the challenges
in implementingmass spectrometry into clinical usagemay indicate that its
optimal role may currently be the identification of potential biomarkers to
be assessed by alternative approaches. The clear best performer, however,
was activating or inactivating protein phosphorylations.

Since protein and particularly phosphoprotein data are highly predic-
tive of responses to therapeutic drugs, it is logical to develop Clinical Labo-
ratory Improvement Amendments (CLIA) compliant approaches to
quantitatively measure phosphoprotein levels [20]. The Knight Diagnostic
Laboratories have recently established a CLIA assay that provides a quanti-
tative readout of oligonucleotide-tagged antibodies using the Nanostring
platform [21]. This GeneTrails©Intracellular Protein Signaling panel com-
prehensively measures cell surface receptors as well as proteins and phos-
phoprotein markers in the RAS/ERK and PI3K/AKT pathways, and
requires only a single formalin-fixed, paraffin-embedded (FFPE) slide. As-
says for additional signaling and immune biomarkers are in development
that will aid in the precise application of therapies likely to benefit patients.

Different platform measurements of the same gene's transcript or pro-
tein levels are not always identical, as seen for ALKRNA asmeasured bymi-
croarray or RNAseq, or for EGFR protein asmeasured bymass spectrometry
or RPPA (Table 1). These differences are attributable to a combination of
experimental and platform variation and are not unexpected. Variations
in results from different drugs with the same targets result from a combina-
tion of experimental reproducibility and drug targeting differences. Phar-
macologically, there are always multiple molecular parameters that affect
outcome, a point to keep in mind when considering biomarker selection
(s). Consequently, it is generally the case that true effects of single molecu-
lar changes on pharmacological response do not survive multiple testing
corrections, thus the use of uncorrected p values is preferable.

There are, of course, other cell line sets that might have been used.
These include, but are not limited to, the Cancer Cell Line Encyclopedia
(CCLE, https://portals.broadinstitute.org/ccle), Cancer Therapeutics Re-
sponse Portal (CTRP, https://portals.broadinstitute.org/ctrp/), and Geno-
mics of Drug Sensitivity in Cancer (GDSC, https://www.cancerrxgene.
org/). Each of these have the advantage of having more cell lines
(~1000), and thus represent more tissue of origin types and subsets, as
well as combinations of molecular features. The NCI's cell line set has the
more complete set of molecular and phenotypic data, including some
22,000 compound and drug activities, as well as 5355 two-drug combina-
tions. Going forward, users will be well advised to choose those subsets of
data that are of greatest relevance to them and to mine drugs responses
and genomic parameters across all database using the CellMiner tools
(http://discover.nci.nih.gov/cellminercdb) [2,3].

https://portals.broadinstitute.org/ccle
https://portals.broadinstitute.org/ctrp/
https://www.cancerrxgene.org/
https://www.cancerrxgene.org/
http://discover.nci.nih.gov/cellminercdb
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Cancer cell lines used as two-dimensional monocultures suffer from all
of the limitations inherent in being simplistic as compared to multiple
other systems. Using two-dimensional co-cultures, three-dimensional
monocultures and three-dimensional co-cultures each provide increasingly
complex systems designed to provide information on cells interactions or
response tomore complex structure.When jumping to animalmodels or pa-
tients, multiple forms of cellular differentiation, interactions between tis-
sues, monitoring by immune responses, and exposure to hormonal
influence (among many other considerations) are added. Nonetheless, 2-
dimensional monocultures provide a basis for the increased understanding
of human physiology at the cellular and biochemical levels. Despite their
relatively simplified design, the combinatorial influences and interactions
for their component genes and functional pathways remain largely not
understood.

Conclusion

For clinically relevant insight, cell lines remain the cornerstone for hy-
pothesis generation and testing, both for the effects of molecular alterations
as well as pharmacological responses. Examples of clinical relevance of cell
lines from our group include the introduction of therapeutic strategies
based on the novel structure TOP1 inhibitors, LMP776 and LMP744, and
the recognition of causal linkage between SLFN11 expression and multiple
classes of DNA-damaging drugs, both discovered using NCI-60 cell line data
[13,22].

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.tranon.2020.100830.
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