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SUMMARY
CellMiner-SCLC (https://discover.nci.nih.gov/SclcCellMinerCDB/) integrates drug sensitivity and genomic
data, including high-resolutionmethylome and transcriptome from 118 patient-derived small cell lung cancer
(SCLC) cell lines, providing a resource for research into this ‘‘recalcitrant cancer.’’ We demonstrate the repro-
ducibility and stability of data from multiple sources and validate the SCLC consensus nomenclature on the
basis of expression of master transcription factors NEUROD1, ASCL1, POU2F3, and YAP1. Our analyses
reveal transcription networks linking SCLC subtypes with MYC and its paralogs and the NOTCH and HIPPO
pathways. SCLC subsets express specific surface markers, providing potential opportunities for antibody-
based targeted therapies. YAP1-driven SCLCs are notable for differential expression of the NOTCH pathway,
epithelial-mesenchymal transition (EMT), and antigen-presenting machinery (APM) genes and sensitivity to
mTOR and AKT inhibitors. These analyses provide insights into SCLC biology and a framework for future in-
vestigations into subtype-specific SCLC vulnerabilities.
INTRODUCTION

Although small cell lung cancer (SCLC) represents only 15% of

all lung cancers, it accounts for more than 30,000 cases/year

in the United States, with most patients presenting with widely

metastatic disease. Unlike the increasingly personalized treat-

ment approaches for non-small cell lung cancer (NSCLC),

SCLC is currently treated as a homogeneous disease (Rudin

et al., 2019; Thomas and Pommier, 2016). The typical short life

expectancy and the therapeutic options, which have not

changed for decades (platinum-etoposide combination as first-

line therapy and topotecan at relapse), caused the National Can-

cer Institute (NCI) to categorize SCLC as a ‘‘recalcitrant’’ cancer.

SCLC tumors are usually characterized by their neuroendo-

crine (NE) differentiation, which is immuno-histochemically visu-

alized with markers including synaptophysin (SYP) and chro-

mogranin A (CHGA) (Gazdar et al., 2017; McColl et al., 2017).

Yet a small subset of SCLCs express low levels of these NE

markers (‘‘non-NE’’) (McColl et al., 2017; Zhang et al., 2018).
This is an open access article under the CC BY-N
Hence, SCLCs have been historically defined as ‘‘classic’’ (NE)

or ‘‘variant’’ (non-NE) (Zhang et al., 2018). Gazdar and colleagues

proposed a classification (‘‘NE score’’) on the basis of the

expression of 50 genes (25 with increased and 25 with

decreased expression) for NE SCLC, including the transcription

factors ASCL1 (achaete-scute homolog 1) and NEUROD1

(neurogenic differentiation factor 1), which are highly expressed

in NE SCLC (Zhang et al., 2018). A consensus nomenclature for

molecular subtypes has been recently proposed on the basis of

differential expression of two additional transcription factors,

YAP1 (Yes-associated protein 1) and POU2F3 (POU class 2 ho-

meodomain box 3) for the non-NE SCLC subtypes (Rudin et al.,

2019). POU2F3 encodes a POU domain transcription factor nor-

mally expressed in chemosensory cells of the intestinal and lung

epithelium (Huang et al., 2018). YAP1, a key mediator of the Hip-

po signaling pathway, is reciprocally expressed relative to theNE

marker INSM1 (McColl et al., 2017). Hence, SCLCs can be clas-

sified into four groups on the basis of the expression of NEU-

ROD1, ASCL1, POU2F3, and YAP1 (Rudin et al., 2019). For
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brevity, we refer to this classification as ‘‘NAPY’’ (N for NEU-

ROD1, A for ASCL1, P for POU2F3, and Y for YAP1).

Genomic initiatives spearheaded by The Cancer Genome

Atlas (TCGA) consortium have accelerated the pace of discovery

for many cancers. Yet TCGA was not extended to SCLC,

because of a lack of readily accessible and adequate tumor tis-

sue, as most patients are diagnosed by fine-needle aspiration.

Nevertheless, SCLC research has benefited from the systematic

collection of a large number of tumor cell lines, most of them

developed at the NCI in the NCI-VA and NCI-Navy Medical

Oncology Branches (Mulshine et al., 2019). This collection has

been distributed widely and included in the cancer drug genomic

databases of the NCI, Broad Institute/MIT, and Sanger/Massa-

chusetts General Hospital (MGH) (Barretina et al., 2012; Garnett

et al., 2012; Iorio et al., 2016; Polley et al., 2016). However, the

data were until now accessible only from individual platforms,

making it challenging to translate genomic knowledge of SCLC

tumor biology and therapeutic possibilities. Additionally, a num-

ber of SCLC cell lines generated by the Minna-Gazdar group at

UT Southwestern (UTSW) Medical Center (McMillan et al.,

2018) had not been integrated in the NCI (NCI-SCLC), Broad

Institute (Cancer Cell Line Encyclopedia [CCLE]/Cancer Thera-

peutics Response Portal [CTRP]), and Sanger/MGH (Genomics

of Drug Sensitivity in Cancer [GDSC]) databases.

To extend our understanding of the genomics of SCLC, we

performed genome-wide promoter methylation on the NCI set

of 66 SCLC cell lines and whole-genome RNA sequencing

(RNA-seq) for 72 cell lines of the UTSW set. We integrated those

data in a global drug and genomic database (SCLC-Global) en-

compassing 118 SCLC lines from 115 individual patients. The in-

tegrated data, SCLC-CellMiner-CrossDataBase (SCLC-Cell-

Miner), are available from a web-based tool (https://discover.

nci.nih.gov/SclcCellMinerCDB/) derived from our CellMiner

cross-database (CDB) web application (Rajapakse et al., 2018).

RESULTS

SCLC-CellMiner Resource
SCLC-CellMiner integrates genomic and drug activity data for

118 molecularly characterized SCLC cell lines, all of which

have DNA fingerprints establishing their provenance (Figures

1A and 1C): 68 from the NCI collection (Polley et al., 2016), 74

from the GDSC (Garnett et al., 2012), 53 from the CCLE, 39

from the CTRP (Barretina et al., 2012), and 73 from UTSW (Gaz-

dar et al., 2010). Seventeen cell lines (14%) are in all five data

sources, 20 (17%) are in four data sources, 23 (20%) in three

data sources, 15 (13%) in two data sources, and 43 (36%) in

only one data source (Figure 1A; Table S1).

Our integrated resource includes new analyses for high-reso-

lution methylome (Krushkal et al., 2020) and copy number for 66

NCI cell lines and RNA-seq for 72 UTSW cell lines (Figure 1B).

SCLC-CellMiner also makes accessible whole-exome mutation

data for 12,537 genes across 72 cell lines of the UTSW SCLC

database in addition to the previously released exome

sequencing data for 52 cell lines from CCLE and 62 cell lines

from GSDC.

Tested clinical drugs and investigational compounds in each

dataset and across data sources are summarized in Figure 1D.
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The NCI dataset provides the largest number (n = 526), followed

by the CTRP (n = 481), GDSC (n = 297), and CCLE (n = 224).

SCLC-CellMiner allows multiple analyses (Table 1): confirming

cell line reproducibility and identity across datasets, drug activity

reproducibility, determinants of gene expression (on the basis of

DNA copy number, promoter methylation, and microRNA

expression), exploration and validation of genomic networks,

classification of the cell lines on the basis of metadata such as

the NAPY, epithelial-mesenchymal transition (EMT) and anti-

gen-presenting machinery (APM) scores, and validation and dis-

covery of drug response determinants.

Data Validation, CDBAnalyses, andCellMiner Univariate
Analyses
Cross-comparison for matched cell lines was used to validate

the new NCI-SCLC methylome (850K Illumina array) (Krushkal

et al., 2020) by comparison with the published SCLC data of

GDSC (450K array) (Rajapakse et al., 2018). The comparison

yields high overall correlation for promoter methylation (Reinhold

et al., 2017), with a median of 0.90 for 9,015 common genes with

a wide expression range for the 43 common cell lines (Figures 2A

and S1). Cross-correlation of the new RNA-seq data from UTSW

with other gene expression data (microarray and RNA-seq) is

also highly significant (Figures 2A and S1). This demonstrates

the high reproducibility and stability of the key molecular charac-

teristics in SCLC lines grown in tissue culture for widely divergent

passages at different institutions and analyzed independently

with different technical platforms (RNA-seq versus microarray,

850K versus 450K methylome arrays).

Reproducibility across datasets can be tested with CellMi-

nerCDB by plotting the same gene (expression, copy number,

or promoter methylation), drug, or microRNA on the x and the

y axes. For instance, Schlafen 11 (SLFN11), whose expression

is highly predictive of response to a broad range of frontline treat-

ments of SCLC (etoposide, topotecan, cis- and carboplatin) as

well as drugs under investigation such as the poly(ADP-ribose

polymerase) inhibitors (Farago et al., 2019; Gardner et al.,

2017; Murai et al., 2019; Zoppoli et al., 2012) measured by

RNA-seq in the UTSW database, shows a 0.92 Pearson correla-

tion with its measured values by Affymetrix microarray in the NCI

database (Figure 2B). SLFN11 promoter DNA methylation in the

NCI database also shows a Pearson correlation of 0.9 with its

value in the GDSC (Figure 2C).

CDB analyses are shown in Figure 2 for MYC, which is

commonly amplified and drives proliferation of SCLC (Ireland

et al., 2020), for BCL2, which encodes a canonical antiapoptotic

protein targeted by navitoclax (ABT-263) (Rudin et al., 2012), and

for two SCLC drugs, etoposide and topotecan. MYC amplifica-

tion (in NCI) is correlated with its overexpression (by RNA-seq

in CCLE) (Figure 2D). Navitoclax activity is correlated with

BCL2 expression (Figure 2E). Response to etoposide is corre-

lated in the NCI and CTRP despite different assays; cells re-

sponding to etoposide overlap for topotecan (Figures 2F and

2G).

Integrating the CellMinerCDB database of more than 1,000

cell lines of all lineages, which includes 74 and 53 SCLC cell lines

in GDSC and CCLE (Figures 1A and 1C) (Rajapakse et al., 2018),

allows comparisons among tissue of origin. For instance, MYC

https://discover.nci.nih.gov/SclcCellMinerCDB/
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Figure 1. Summary of the Data Included in SCLC-CellMiner and Resources

(A) Cell line overlap between the data sources. Cell lines in red are from the NCI database (n = 68), dark blue from CTRP (n = 39), light blue from CCLE (n = 53),

orange from GDSC (n = 74), and green from UTSW (n = 73). Cell line details are provided in Table S1.

(B) Summary of the genomic and drug activities data in SCLC-CellMiner (https://discover.nci.nih.gov/SclcCellMinerCDB/). For microarray, mutations, copy

number, and promoter methylation data, the numbers indicate the number of genes. For RNA-seq data, the numbers indicate the number of transcripts. The

bottom row shows the total number of cell lines (N = 118) integrated in SCLC-CellMiner. New data analyses are highlighted in yellow.

(C) Cell line overlap between data sources (see Table S1 for details).

(D) Drug overlap between data sources.
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expression is correlated with the replication processivity factor

PCNA (proliferating cell nuclear antigen) in SCLC versus other

tissues, including NSCLC, consistent with the replicative geno-

type of SCLC and high PCNA expression compared with NSCLC

(Figure 2H).

The SCLC Methylome
Two prior studies described the promoter methylation profiles of

SCLC with limited data for cell lines; 18 were examined by Kalari

et al. (2013) and 7 by Poirier et al. (2015) together with primary
tumors and patient-derived xenograft (PDX) samples. Here we

analyzed the methylome of the 66 cell lines of the NCI and pro-

cessed the methylome of the whole 985 GDSC cancer cell line

dataset, including its 61 SCLC cell lines. Individual probe anal-

ysis for the Illumina 850K platform in the NCI SCLC cell lines is

reported in a parallel publication (Krushkal et al., 2020), while

SCLC-CellMiner provides promoter methylation score (Reinhold

et al., 2017). The promoter methylation data are highly reproduc-

ible between the NCI andGDSC datasets for the 43 common cell

lines despite the different Illumina platforms (850K versus 450K)
Cell Reports 33, 108296, October 20, 2020 3
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Table 1. Examples of SCLC-CellMiner Capabilities

SCLC-CellMiner

Explores and Validates Method Examples Examples of Findings

1 cell line reproducibility

and consistency

‘‘Univariate Analyses: Plot Data:’’

expression of the same gene ‘‘across

different datasets’’ (X and Y)

Figure 2 cell lines are highly

reproducible across

datasets

2 omic data robustness

and reproducibility

‘‘Univariate Analyses: Plot Data:’’

expression, copy number variation,

promoter methylation, mutations for the

same gene ‘‘across datasets’’ (X and Y)

Figures

1B, 1C, and 2

transcripts, promoter

methylation, and gene

copy number are highly

reproducible across datasets

3 drug data robustness

and reproducibility

‘‘Univariate Analyses: Plot Data:’’ activity of

the same drug ‘‘across datasets’’ (X and Y)

Figures

2E and 2F

warning: not all drugs

are consistent across dataset

4 integrates all the SCLC

cell line genomic datasets

under SCLC-Global (NCI,

GDSC, CCLE, CTRP, UTSW)

use the pull-down tabs for ‘‘Cell Line Sets’’

and choose ‘‘SCLC-Global’’

Figures

4D, 6H, S2G,

S2H, and S3C

the 119 SCLC cell lines can

be classified in the four

groups of NAPY; development

of NAPY genomic signatures

5 integration with

CellMinerCDB

open in parallel: https://discover.nci.nih.

gov/cellminercdb

Figures 2,

4, and 5

POU2F3 is selective for SCLC;

YAP1 is expressed widely

beyond SCLC; ASCL1 is

co-expressed with NEUROD1

6 select and compare subsets

of cell lines based on tissue

of origin or metadata:

NAPY, TNBC, NSCLC

‘‘Univariate Analyses:’’ select y axis: ‘‘Select

Tissue/s of Origin’’ or ‘‘Select Tissues to

Color’’ (NEUROD1, ASCL1, POU2F3,

YAP1, NE)

Figures 2H,

5F, S3, and S6

NEUROD1 and ASCL1 are

also selectively expressed

in CNS cancer cell lines

7 test phenotypic data

(mda): NE, APM, EMT

‘‘Univariate Analyses:’’ select ‘‘Data Type

mda: NE, APM, EMT;’’ additional selection

can be done for subset (see #6)

Figures

4H and 6

NE cell lines have low

antigen-presenting

machinery (APM) score

8 tissue- or subset type-

specific analyses

(NAPY; NE)

‘‘Select Tissue/s of Origin’’ or ‘‘Select

Tissues to Color’’

Figures 5, 6,

and S4–S6

YAP1 cell lines have

lower replication and

highest APM score

9 epigenetics: promoter

methylation for any

given gene

‘‘Univariate Analyses: Plot Data:’’

expression of a given gene versus its

methylation (X and Y ‘‘Data Type’’) within a

given ‘‘Cell Line Set’’ or across datasets

(independent datasets can be tested for

missing ‘‘Data Type’’ and confirmation)

Figure S1 promoter methylation is

a driver for gene

expression (NAPY genes;

SLFN11; MGMT;

SMARCA1; CGAS)

10 gene amplification

and deletions for

any given gene

‘‘Univariate Analyses: Plot Data:’’

expression of a given gene versus copy

number (X andY ‘‘Data Type’’) within a given

‘‘Cell Line Set’’ or across datasets

(independent datasets can be tested for

validation and missing ‘‘Data Type’’)

Figures 1,

3, and S1

MYC genes and other

oncogenes are often

driven by copy

number variation (CNV)

11 integrate and complement

different datasets for

common cell lines

‘‘Univariate Analyses: Plot Data:’’ plot

different parameters (‘‘Data Type for’’

genomic or drug response) across ‘‘Cell

Line Sets’’ (X and Y) to counter missing data

in one dataset

Figures 1,

2, and 6

drug response data in

one dataset can be

correlated with genomics

of another dataset

12 genomic pathway

discovery (coregulated

genes and microRNAs)

‘‘Univariate Analyses: Plot Data:’’

expression of a given gene (X or Y ‘‘Data

Type’’) within a given dataset or across

datasets; also use the ‘‘Compare Patterns’’

tab

Figures 5, 6,

S2, and S3

ASCL1 and YAP1 are

integrated in tight

genomic networks

connected with the

NOTCH pathway

13 discover determinants

of drug response and

targeted drug delivery

‘‘Univariate Analyses: Plot Data: Compare

Patterns:’’ coregulated genes for a given

gene (X or Y) within a given ‘‘dataset’’

(independent datasets can be tested for

confirmation)

Figures

6 and S6

resistance of YAP1 cell lines to

chemotherapy and potential

response to mTOR and

immune checkpoint inhibitors;

NAPY-specific antigen

cell surface biomarkers

(Continued on next page)
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Table 1. Continued

SCLC-CellMiner

Explores and Validates Method Examples Examples of Findings

14 validate genomic

determinant of

drug response

‘‘Univariate Analyses: Plot Data: Compare

Patterns:’’ plot genomic parameter versus

drug (X or Y ‘‘Data Type’’)

Figure 6 validation of SLFN11

for DNA damaging

chemotherapy

15 examine drug

correlations:

COMPARE analyses

‘‘Univariate Analyses: Plot Data: Data

Type:’’ drug versus drug (X or Y); also select

‘‘Compare Patterns’’ to identify drug-drug

correlations

Figure S1 cell lines sensitive to

etoposide are

cross-sensitive to topotecan

16 multivariate models

of drug response

and genomic features

‘‘Multivariate Analyses: Cell Line Set;

Response Data Type; Predictor Data Type/

s; Predictor Identifier:’’ enter drug and

genomic parameters to be tested as

identifier or use ‘‘LASSO’’ to discover

additional non-redundant determinants of

response

Figures 5B

and 5D;

Figure S3E

discover independent

omic or drug parameters

to build a molecular

signature for drug response

or gene expression

17 data download ‘‘Univariate Analyses: View Data:

Download’’ tabs or ‘‘Multivariate Analyses:

Download’’ tab

Figure 6 allow further in-depth

analyses and data

download in Excel

18 drug identifier

conversion

not applicable Figures

2E and 2F

allow drug identification

across different sources

Set off in quotation marks are the option tabs of SCLC-CellMiner (https://discover.nci.nih.gov/SclcCellMinerCDB/).
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(Figures 2A and 2C). Thus, SCLC-CellMiner provides promoter

methylation for a total of 84 individual SCLC cell lines (43 com-

mon + 23 specific to NCI-SCLC + 18 specific to GDSC).

Low Global Methylation and Promoter Methylome of

SCLC Cell Lines

Global methylation levels show marked differences between the

SCLC and the other cancer cell lines from different histologies

across the GDSC, with SCLC showing the lowest median level

of global methylation among 21 cancer subtypes (Figure 3A).

To assess the distinctiveness of the methylome of the SCLC

cell lines, we compared 61 cell lines from GDSC and 66 cell lines

from NCI with the 75 NSCLC cell lines of the GDSC and the 60

cell lines of the NCI-60, which include nine NSCLC cell lines.

We selected 1,813 genes with the highest methylation range

(SD > 0.25). Hierarchical clustering (Figure 3B) shows that

SCLC cell lines come together (cluster b), except for nine cell

lines (one in cluster a, eight in cluster c), which are all SCLCs

not expressing NE features (‘‘non-NE’’ SCLCs). Of the five

NSCLC cell lines in the SCLC cluster (b), three are large cell

lung cancers and one is a carcinoid (Table S2). This demon-

strates a promoter methylation signature for SCLC cell lines

associated with NE phenotype.

Genes clustered as (1) hypomethylated in SCLC (clusters

1–3), including ASCL1, NEUROD1, INSM1, and CHGA (Fig-

ure S2); (2) hypermethylated in SCLC (cluster 5); and (3) variably

methylated independently of tissue of origin (cluster 4) (Table

S2). Pathway analysis of the 1,082 hypomethylated genes (clus-

ters 1–3) shows enrichment of neurological as well as extracel-

lular matrix (ECM) pathways (Figure 3C; Table S2), consistent

with the NE and aggregation features of classic SCLC cell lines.

Many genes involved in EMT (Kohn et al., 2014) also tend to be

hypomethylated in SCLC cell lines, including ZEB1, CLDN7,

and ESRP2.
Histone and Epithelial Genes Are Driven by Methylation

in SCLC Cell Lines

To determine the influence of promoter methylation on gene

expression, we selected gene categories on the basis of our pre-

viously established Development Therapeutics Branch (DTB)

gene sets (Table S3) (Reinhold et al., 2017). Epithelial and histone

genes stood out (Figure 3D, with median correlation of �0.53

and�0.50, respectively). Canonical histones showed the highest

negative correlation between expression and methylation (Fig-

ure 3E), suggesting that epigenetic regulation of canonical his-

tones is a feature of SCLC carcinogenesis.

We also performed gene set enrichment analyses (GSEAs)

looking at GeneOntology (GO) and functional gene set collections

(MSigDB Hallmark gene set, C2 curated pathway gene set, and

C5 GO gene set, as well as our DTB functional gene sets; Table

S3). They confirmed the high significance of the histones and

epithelial genes as well as additional GO categories, including

protein modifications, microtubule cytoskeleton, mitotic cell cy-

cle, and cellular responses to DNA damage (Table S4).

SCLC DNA Copy Number versus Methylome as Drivers
of Gene Expression
To evaluate the relative importance of promoter methylation and

genecopynumber,wederivedcopynumberdata fromthe Illumina

850Kmethylomearray andcorrelated theexpressionof eachgene

with DNA copy number and methylation in the NCI-SCLC dataset

(Figure 3E) (Reinhold et al., 2017). Correlations for individual genes

can be readily displayed with SCLC-CellMiner (https://discover.

nci.nih.gov/SclcCellMinerCDB/), and snapshots of genes involved

in SCLC carcinogenesis and driven by methylation (NEUROD1,

ASCL1, POU2F3, YAP1, and SLFN11) are presented in Figure S1.

Unlike the histone and epithelial genes, the expression of

SCLC growth-driving genes, such as the oncogenes (MYC,
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Figure 2. Validation and Reproducibility of the SCLC-CellMiner Data and Snapshots of Representative Outputs of SCLC-CellMiner (https://

discover.nci.nih.gov/SclcCellMinerCDB/)

(A) Reproducibility between data sources. Pearson’s correlations are indicated above violin plots.

(B) Snapshot showing the reproducibility of SLFN11 gene expression across the 41 common cell lines (AffyArray for NCI/DTP on the x axis versus RNA-seq for

UTSW). Each dot is a cell line. The data can also be readily displayed in tabular form and downloaded in tab-delimited format by clicking on the ‘‘ViewData’’ tab to

the right of the default ‘‘Plot Data’’ tab.

(C) Snapshot showing the reproducibility of SLFN11 promoter methylation across the 43 common cell lines independently of the methods used (850K Illumina

Infinium MethylationEPIC BeadChip array for NCI/DTP versus Illumina HumanMethylation 450K BeadChip array for GDSC).

(D) Highly significant correlation between MYC copy number (NCI/DTP) and MYC expression (CCLE) for the 36 common SCLC cell lines.

(E–G) Examples of drug activity across databases for the common cell lines.

(H) High proliferation signature of SCLC cell lines on the basis of high PCNA andMYC expression. Snapshot shows that SCLC (green) overexpress PCNA and fall

into two groups with respect to MYC.
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MYCL, MYCN, and AKT1), tumor suppressor genes (CDKN2A,

BAP1, and VHL), and chromatin remodeler genes (EP300 and

CREBBP), are driven primarily by copy number alterations (Fig-

ure 3E; Table S5). CellMinerCDB snapshots showing increased

(MYC, MYCL, and MYCN) or decreased (BAP1 and VHL) copy

number variation are provided in Figure S1.

SCLC-Global Integrates Transcriptomes and Molecular
and Phenotypic Data for 116 Cell Lines
To integrate expression data from microarray and/or RNA-seq

across the five data sources (Figure 1), we created the ‘‘SCLC-

Global’’ expression set by regrouping all datasets by Z score

normalization, which enables CDB analyses of gene expression

(and also other genomic, epigenomic, and phenotypic drug

response information). Principal-component and correlation ana-

lyses (Circos- and CAT-plots) validated the approach (Figures

S2A–S2D and S2F). The ‘‘SCLC-Global’’ data are available in

the pull-down tabs ‘‘x-Axis Cell Line Set’’ and ‘‘y-Axis Cell

Line Set’’ (https://discover.nci.nih.gov/SclcCellMinerCDB/). The

‘‘SCLC-Global’’ mRNA dataset shows very high correlation with
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each dataset (NCI-SCLC, GDSC, CCLE, and UTSW) (Figure S2E).

For example, ASCL1 expression in SCLC-Global versus SCLC

NCI/DTP is highly correlated (r = 0.99, p = 1.9e-55). SCLC-Global

offers many other features, including cross-correlation with other

databases for DNA methylation, DNA copy number, DNA muta-

tion, microRNA expression, and drug activity.

SCLC-Global can also be used to retrieve all the genes corre-

lated with the expression of any given gene. For instance, for

MYCN, the top correlate (p = 0.967) is MYCNOS (Figures S2G–

S2I), theMYCN Opposite Strand antisense RNA. The data for in-

dividual cell lines can also be visualized by plotting MYCNOS

against MYCN in the SCLC-Global database (Figure S2H). Plot-

tingMYCN versusMYCNOS in the CCLE database using CellMi-

nerCDB extends the finding that MYCN is co-expressed with its

antisense RNA in both SCLC and brain tumor cell lines

(Figure S2I).

NE, NAPY, MYC, and EMT Molecular Signatures
Ranking of the 116 cell lines of SCLC-Global on the basis of their

NE scores (Zhang et al., 2018) shows the expected high

https://discover.nci.nih.gov/SclcCellMinerCDB/
https://discover.nci.nih.gov/SclcCellMinerCDB/
https://discover.nci.nih.gov/SclcCellMinerCDB/
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Figure 3. Methylation Profile of SCLC Cell Lines

(A) Global hypomethylation in SCLC cell lines. Each point represents the median methylation level of individual cell lines for the total set of 17,559 genes. Twenty-

one cancer subtypes from GDSC are ranked according their global methylation levels. SCLC cell lines are in red (NCI) and green (GDSC).

(B) Comparison of promoter methylation profiles for 287 cell lines including SCLC (NCI and GDSC), NSCLC (GDSC and NCI-60), and non-lung cancer cell lines

from the NCI-60. The heatmap displays the levels of methylation of 1,813 genes with high dynamic range. Examples of genes are indicated at right and details

provided in Table S3. Clusters a, b, and c include 68, 117, and 102 cell lines, respectively.

(C) Pathway analysis.

(D) Functional categories with significant correlation between gene expression and promoter methylation for the NCI-SCLC cell lines (n = 66). Median values

transcript expression versus DNA methylation level correlations of 20 functional groups including 17,144 genes (Table S5).

(E) Correlations between gene expression and predictive values of DNA copy number. R values of �1 and +1 indicate perfect negative and positive predictive

power, respectively. Each point represents 1 of a total of 14,046 genes analyzed. Oncogenes and tumor suppressor genes (highlighted in purple and in blue,

respectively) are driven primarily by copy number. Histone genes (red) and epithelial genes (green) are driven primarily by DNAmethylation (Table S5). SCLC key

genes (ASCL1, NEUROD1, POU2F3, and YAP1) are also labeled.
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correlation with SYP, CHGA, NCAM1, and INSM1 expression

(Figure 4A). To explore the selectivity of those genes for SCLC,

we examined the GDSC and CCLE human tumor cell line collec-

tions with CellMinerCDB (Rajapakse et al., 2018).CHGA, INSM1,

and SYP are selective for SCLC and brain tumors, consistent

with the neuronal differentiation of SCLC (Figures S3A and

S3B). The SCLC cell lines with high NE scores, which can be

readily labeled in SCLC-CellMinerCDB under the ‘‘Select Tis-

sues to Color’’ tab, have significantly higher levels of expression

of CHGA and SYP than cell lines with low NE score (Figure S3C).

Next we tested the lineage transcription factor molecular clas-

sification on the basis of the expression of NEUROD1 and

ASCL1 for NE and YAP1 and POU2F3 for non-NE SCLC (Rudin
et al., 2019) and found clear separation (Figure 4B; Table S6).

Comparison with other tissues showed selective expression of

NEUROD1 and ASCL1 in SCLC and brain tumors (Figure 4C),

while POU2F3was expressed only in a subset of SCLC cell lines

(Figure 4D). In contrast, YAP1 is not exclusive to SCLC and is ex-

pressed in a wide range of cancer types (except blood and

lymphoid tumors) (Figure 4E), consistent with its broad role in

carcinogenesis (Ma et al., 2019).We also noted a significant frac-

tion of NE-SCLC cells with dual expression of ASCL1 and NEU-

ROD1 (Figures 4B and 4F).

The threeMYCgenes (MYC,MYCL, andMYCN) playkey roles in

SCLC carcinogenesis (Johnson et al., 1987; Little et al., 1983; Nau

etal., 1985, 1986).WithSCLC-Global,�80%of theSCLCcell lines
Cell Reports 33, 108296, October 20, 2020 7
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Figure 4. SCLC Genomic Molecular Classifications

(A) NE classification. Cell lines with high and low NE score are in dark brown and gray, respectively (n = 116 cell lines; CellMiner-Global).CHGA, SYP, and INSM1

expression after Z score normalization.

(B) NAPY classification for the 116 SCLC cell lines. Expression values across the five data sources were obtained after normalization by Z score (Table S3).

(C) NEUROD1 and ASCL1 expression are specific for both SCLC and brain tumor cell lines (GDSC database; each point is a cell line; n = 986).

(D) POU2F3 is selectively expressed in SCLC but not in brain tumor cell lines (GDSC; n = 986).

(E) YAP1 shows a high range of expression across different cell line subtypes (GDSC; n = 986). (C)–(E) are snapshots (https://discover.nci.nih.gov/cellminercdb).

(F) Co-expression of NEUROD1 and ASCL1 in SCLC-Global.

(G) Subtypes of cell lines in GDSC.

(H) EMT signature and NAPY classification in CellMiner-Global.

(I) Classification based on expression of the three MYC genes in 106 SCLC cell lines across the five data sources after Z score normalization.
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highly express one of the MYC genes, and MYC and MYCL are

most prevalent (Figure 4H). Expression of theMYCgenes ismutu-

ally exclusive (Ireland et al., 2020; Mollaoglu et al., 2017), with the

non-NE cell lines (Y and P) expressing MYC and the NE cell lines

expressingMYCL andMYCN (Figures 4H and S3).

The EMT status (Rajapakse et al., 2018) derived from the

expression of 37 genes (Kohn et al., 2014) showed that the

SCLC-P cell lines are consistently epithelial, while the SCLC-Y

cell lines have a mesenchymal signature (Figure 4I), except for

NCI-H1607, expressing both YAP1 and POU2F3 (Figure 4B,

left). The SCLC-NE cells form two subgroups, one mesenchymal

and the other intermediate (Figure 4I).

SCLC Transcriptional Networks for the ASCL1, YAP/
TAZ, and NOTCH Pathways
As a pioneer transcription factor, ASCL1 binds E-box motifs (as

does NEUROD1) to promote chromatin opening and activation

of neuronal genes. Figure 5A summarizes the ASCL1-NOTCH

network on the basis of our molecular interaction map (MIM)

conventions (https://discover.nci.nih.gov/mim/index.jsp) (Kohn

et al., 2006). Notably both NKX2.1 and PROX1 transcription fac-

tors are highly significantly co-expressed with ASCL1, suggest-

ing that they function together (Pozo et al., 2020). This co-

expression is not due to the location of those genes on the

same chromosomes (Figure 5A), indicating upstream regulatory
8 Cell Reports 33, 108296, October 20, 2020
transcriptional control with the likely implication of super-en-

hancers. As expected, the transcriptional targets of ASCL1

were co-expressed with ASCL1 (Figures 5A and 5B). One of

those, BCL2, is positively correlated not only with ASCL1 but

also with POU2F3, whereas BCL2 expression is negatively

correlated with NEUROD1 expression (Figures S3H and S3I).

Expression of the cancer-driving genes RET, SOX1, SOX2,

FOXA1, and FOXA2 is also highly correlated with ASCL1 (Fig-

ure 5A). Expression of DLL3, a known inhibitor of the NOTCH

pathway and direct target of ASCL1, was found to be signifi-

cantly correlated with ASCL1 (r = 0.61, p = 4.05e-13; Figure 5A).

Analysis of the NOTCH pathway whose inactivation is crucial

in NE-SCLC (Gazdar et al., 2017; Leonetti et al., 2019; Ouadah

et al., 2019) showed that NOTCH1, NOTCH2, and NOTCH3 are

jointly downregulated in the SCLC-A cell lines (Figures 5A and

5B). Functional downregulation of the NOTCH pathway is

consistent with the negative correlation (r = �0.545, p = 2.45e-

10) between ASCL1 and REST, the transcriptional target of

NOTCH (Figure 5A). The NEUROD1 subset of NE-SCLC

(SCLC-N) did not show significant correlation between NEU-

ROD1 and DLL3 expression (r = �0.18, p = NS) (Figures S3J

and S3K), questioning whether DLL3 downregulates the NOTCH

pathway in SCLC-N cell lines.

Of the 116 SCLC cell lines in SCLC-CellMiner, 9 belong to the

YAP subset (Figure 4). Because expression of YAP1 is a feature

https://discover.nci.nih.gov/mim/index.jsp
https://discover.nci.nih.gov/cellminercdb
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Figure 5. Integration of the Transcriptional Networks of the SCLC-A and SCLC-Y Cell Lines with the NOTCH Pathway for the 116 Cell Lines

Derived from SCLC-Global Analyses

(A) Highly significant correlations between ASCL1 expression andNKX2-1 and PROX1 and downstream transcriptional targets (bayonet arrows). Numbers to the

right indicate the significantly positive Pearson’s correlations coefficients (red) (https://discover.nci.nih.gov/SclcCellMinerCDB/) irrespective of chromosome

locations (black in parenthesis). The NOTCH receptor network with its transcriptional target REST (yellow box) shows significant negative Pearson’s correlations

(blue).

(B) Correlations between the expression of ASCL1 and the genes shown in (A) (snapshot from the multivariate analysis tool of SCLC-CellMiner).

(C and D) Same as (A) and (B) except for YAP1.

(E) Correlations between the NOTCH receptors and ligands genes and ASCL1 versus YAP1. Pearson’s correlation coefficients are indicated in parenthesis.

(F) Correlation between NOTCH1 and NOTCH2 expression. YAP1 cells show significantly high expression of both NOTCH1 and NOTCH2.

(G) Correlation between NOTCH1 and NOTCH2 expression across the 1,036 cell lines of the CCLE. SCLC-Y cells have highest expression.

(H) SCLC-Y cells have significantly fewer RB1 mutations.

(I) t-Distributed stochastic neighbor embedding clustering plot using gene expression data of 60 SCLC and 100 NSCLC cell lines (microarray; GDSC data source).
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in a wide variety of solid tumors (Figure 4E), we explored the YAP

transcriptional network (Figure 5C). The first notable finding is

that YAP1 expression is highly correlated with the expression

of its heterodimeric partner TAZ (encoded by the WWTR1/TAZ

gene) both in the SCLC-Global dataset (Figures 5C and 5D)

and across the 986 cell lines of the GDSC (Figure S4), suggesting

a master transcriptional regulator upstream of both genes, or

YAP1 acting as super-enhancer (Figure 5C).

YAP/TAZ functions as a direct activator of the TEAD transcrip-

tion factors (encoded by TEAD2/TEAD3/TEAD4), whose expres-

sions are highly significantly coregulated with YAP1 (Figure 5C).

As expected, known transcriptional targets of the TEADs are also

significantly correlated with YAP1 expression (Figure 5C). Others

can readily be revealed with the ‘‘Compare Patterns’’ feature of

SCLC-CellMiner using TEAD or YAP1 as ‘‘seeds.’’ Among those

are the cancer- and growth-related SMAD3 and SMAD5 genes,

CCN1/CYR61 (encoding a growth factor interacting with integ-

rins and heparan sulfate), and VGLL4 (Figures 5C and 5D).

Next, we explored the Hippo pathway, which acts as a nega-

tive regulator of YAP/TAZ and is commonly inactivated in solid

tumors (Dasgupta and McCollum, 2019; Ma et al., 2019; Totaro

et al., 2018). Expression of LATS2 and LATS1, which encode

the core kinase of the Hippo pathway and negatively regulate

YAP by sequestering phosphorylated YAP in the cytoplasm,

are significantly positively correlated with YAP1 expression (Fig-

ures 5C and 5D). Similarly, the transcripts of MOB1A and

MOB1B, the cofactors of LATS1/2, are positively correlated

with YAP1 (Figures 5C and 5D). Moreover, the transcripts of

the negative regulators of YAP, AMOT and AMOTL2, which are

released by depolymerized F-actin and sequester YAP from its

nuclear translocation, are also significantly positively coregu-

lated with YAP1 (Figures 5C and 5D) (Dasgupta and McCollum,

2019; Wang et al., 2019). Together, these results demonstrate

that the SCLC-Y cell lines co-express both YAP/TAZ and its

negative regulator genes driving the Hippo pathway, suggesting

an equilibrium (‘‘metastable’’) state in which the Hippo pathway

remains active to potentially negatively regulate YAP/TAZ in

SCLC-Y cells.

Consistent with the NOTCH pathway as transcriptional target

of YAP/TAZ and the TEADs (Totaro et al., 2018), YAP1 expres-

sion is highly correlated with NOTCH1, NOTCH2, NOTCH3,

and REST (Figures 5C–5E). In contrast, expression of the

NOTCH ligand DLL3, which acts as negative regulator of the

NOTCH receptors (Andersson et al., 2011), is negatively corre-

lated with YAP1 (Figure 5E). These results support the conclu-

sion that the NOTCH pathway is ‘‘on’’ in the SCLC-Y cells. In

contrast, in the SCLC-A cells, the opposite is observed (Figures

5E and S4C). The SCLC-P cells also show a positive correlation

between the NOTCH receptor and REST effector transcripts and

POU2F3 expression (Figures 5F, S4C, and S4F). These analyses

demonstrate a difference between NE and non-NE SCLC with

respect to NOTCH, with the pathway ‘‘off’’ in the NE subset (N

and A) and ‘‘on’’ in the non-NE subset (P and Y).

Global analyses of the NOTCH pathway across 1,036 cell lines

from the 22 different tissue types of CCLE (Figures 5G, S4D, and

S4E) show that NOTCH2 and NOTCH3 are co-expressed in

many tumor types and that the NE-SCLC cell lines are character-

ized by low NOTCH expression (Figures 5G and S4D). In
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contrast, the SCLC-Y- and -P cells are among the highest

NOTCH-expressing cells.

The SCLC-Y Transcriptome Clusters with NSCLC Cell
Lines
Next, we examined the relationship between the SCLC-Y and

the NSCLC cell lines (Figure 5I). tSNE (t-distributed stochastic

neighbor embedding) is a method to highlight strong patterns

by reducing the dimensionality of a dataset while preserving as

much ‘‘variability’’ as possible. tSNE analysis using gene expres-

sion data between NSCLC (n = 100) and SCLC (n = 60) cell lines

from the GDSC grouped the SCLC-Y with the NSCLC cell lines.

Among the few NSCLC cancer cell lines clustering with the NE-

SCLCwere carcinoids and large cell lung cancers (Figure 3B; Ta-

ble S2). Our analysis supports that SCLC-Y cell lines are distinct

among the SCLC subtypes with transcriptome similarity to

NSCLC.

Another characteristic of the SCLC-Y cell lines is their low

number of RB1 mutations (only one cell line among nine shows

RB1mutation; Figure 5H). However, several of the SCLC-Y lines

(NCI-H196, NCI-H841, NCI-H1339, and NCI-H1607) do not ex-

press RB1 protein (Modi et al., 2000). The SCLC-Y cell lines

also show reduced replication transcriptional network with

lowest PCNA, MCM2, and RNASEH2A expression (Figure S5).

Additionally, the SCLC-Y cells express themesenchymal marker

VIM, the cytoskeleton component and regulators CNN2 (acto-

myosin and F-actin component), and the AMOT genes, which

regulate cell migration and actin stress fiber assembly (Figure 5C)

(Dasgupta and McCollum, 2019).

Global Drug Activity Profiling Suggests Transcription
Elongation Pathways as General Drug Response
Determinants and Hypersensitivity of the SCLC-P Cell
Lines
To explore connections between the NAPY classification and

drug responses, we analyzed the drug responses of the 66

SCLC-NCI cell lines using 134 compounds with the broadest ac-

tivity range (Polley et al., 2016). Unsupervised hierarchical clus-

tering generated two groups of cell lines: those globally drug

resistant and those globally drug sensitive, with a bimodal distri-

bution (Figure 6A). Although the NE cell lines (SCLC-N and

SCLC-A) and SCLC-Y were distributed in both clusters, the

SCLC-P cell lines clustered among the most drug sensitive.

Differential gene expression followed by enrichment pathway

analyses (Figures S6A and S6B) showed the ribosomal and

EIF2 signaling pathway selectively activated in the sensitive

cell lines. EIF2 (eukaryotic translation initiation factor 2A) cata-

lyzes the first regulated step of protein synthesis initiation, pro-

moting the binding of the initiator tRNA to 40S ribosomal sub-

units. EIF2 factors are also downstream effectors of the PI3K-

AKT-mTOR and RAS-RAF-MAPK pathways. These results sug-

gest that global drug response in SCLC is associated with active

protein synthesis.

Drug Activity Profiling in Relationship with the NAPY
Classification
Both the SCLC-A and N subgroups showed a broad range of

response to etoposide, topotecan, and cisplatin, as well as to
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Figure 6. Predictive Biomarkers for SCLC Responses

(A) Global response of the NCI-SCLC cell lines (NAPY classification to the left).

(B) SCLC-P cells are the most sensitive to etoposide and talazoparib. SCLC-Y cell lines are the most resistant.

(C) Selective activity of the BCL2-BCL-XL inhibitor in a subset of the SCLC-A cells and highly significant correlation with BCL2 expression (right).

(D) Activity of mTOR/AKT inhibitors in a subset of non-NE cells.

(E) Activity of the PI3K inhibitors in non-NE SCLC cells.

(F) SLFN11 expression across the 116 SCLC cells exhibits bimodal distribution in all four SCLC subsets and is predictive of response to DNA damaging che-

motherapeutics (Figure S6).

(G) Selective expression of native immune pathway genes in SCLC-Y (correlations between each of the NAPY genes and the listed native immune response

genes. Significantly positive and negative correlations are in red and blue, respectively.

(H) Snapshot from SCLC-CellMiner illustrating the correlation between the YAP1 and IFITM3 transcripts across the 116 cell lines of SCLC-Global (Figure S6).

(I) Selective expression of the DLL3 and CEACAM5 (Figure S6).

(J) Potential surface biomarker targets for NE-SCLC and SCLC-P cells.

(K) Potential surface biomarkers for SCLC-Y cells.

Data in (A)–(E) and (I)–(K) are from the 66 cell lines from the NCI-DTP drug and genomic database.
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the PARP inhibitor talazoparib (Figures 6B and S6C). The most

significant genomic predictor of response for this NE subgroup

is SLFN11 expression (Figure S6C), consistent with analyses in

other tissue types (Barretina et al., 2012; Rajapakse et al.,

2018; Zoppoli et al., 2012). The potential value of SLFN11

expression as a predictive biomarker is borne out by its highly

dynamic and bimodal expression pattern (Figure 6F). Approxi-
mately 40%of the 116 SCLC cell lines of SCLC-Global do not ex-

press SLFN11 (Figure S6D) and are predicted to be DNA

damaging agent resistant.

Methylguanine methyltransferase (MGMT) is a predictive

biomarker of drug response is for temozolomide (TMZ). Cancer

cells (typically glioblastomas) with MGMT inactivation are selec-

tively sensitive to TMZ. Analyses of SCLC-Global reveals lack of
Cell Reports 33, 108296, October 20, 2020 11
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MGMT expression in 33% (N = 38) of the cell lines (Figure S6D).

Notably, the non-NE SCLC cell lines all express MGMT, indi-

cating that the SCLC-P- and -Y cancer cells are predicted to

be poor candidates for TMZ-based therapies (Farago et al.,

2019).

The SCLC-Y cell lines show the greatest resistance to the

standard-of-care drugs (etoposide, cisplatin, and topotecan)

(Figure 6B). This result is not limited to SCLC, as a highly signif-

icant drug resistance phenotype is observed between YAP1

expression and response to etoposide and camptothecin across

the whole database of the CCLE-CTRP (Figure S6E).

To determine whether the NAPY classification predicts sensi-

tivity to drugs not commonly used as standard of care for SCLC,

we analyzed 526 compounds of the NCI database (Polley et al.,

2016) (Table S7). Eighteen drugs were highly subtype specific

(p < 0.01, Kruskal-Willis test). Although the BCL2 inhibitor ABT-

737 was selective of the SCLC-A cells, seven PI3K-AKT-mTOR

inhibitors showed high activity in the non-NE cell lines (SCLC-Y

and SCLC-P) (Figures 6D and 6E). The SCLC-P and -Y cell lines

are alsomore sensitive to multi-kinase inhibitors, including dasa-

tinib and ponatinib.

Immune Pathways Are Selectively Expressed in the
YAP1 Subgroup of SCLC
Although immune checkpoints inhibitors have been approved for

SCLC, the benefit in an unselected patient population is modest

with approximately 2-month improvement in median overall sur-

vival when immunotherapy is added to first-line platinum and

etoposide.

To explore the immune pathways in the 116 cell lines of SCLC-

Global and the potential value of the NAPY classification for se-

lecting SCLC patients likely to respond to immune checkpoint in-

hibitors, we explored the transcriptome of a subset of estab-

lished native immune response and antigen-presenting genes.

Figures 6G and 6H shows that the SCLC-Y cell lines are the

only subset expressing innate immune response genes. Expres-

sion of the innate immune effector genes CGAS and STING,

HLA-E and interferon-inducible genes (IFIT3, IFITM1, IFI44L,

IFIT, IFITM8P, and IFITM3) are positively correlated with YAP1

expression. In contrast, the NE subtype shows negative correla-

tion between NEUROD1 and ASCL1 expression for those same

immune genes (Figure 6G).

On the basis of the study ofWang et al. (2019) reporting a novel

APM transcription signature score yielding a high prediction in-

dex for tumor response to immune checkpoint inhibitors, we

tested the APM score in the SCLC cell lines (Figure S6). The

APM score showed a high correlation with PD-L1 expression,

which is notable as PD-L1 is not included among the 13 genes

constituting the APM score. Interestingly, the SCLC-Y subtype

showed the highest APM score (Figure S6K).

Cell Surface Biomarkers for Targeted Therapy in
Relation with the NAPY Classification
Antibody-targeted therapies including antibody-drug conjugates

(ADC) represent a promising approach for specific homing,

increased uptake, and drug retention at tumor sites while

reducing drug exposure to normal tissues and the associated

dose-limiting side effects (Coats et al., 2019).
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A primary criterion for efficient drug delivery is to choose an

exclusively or overexpressed target for the cancer cells. Figures

6I and S6 show the expression of two receptors of clinical ADCs

in the SCLC cell lines: DLL3 (used for SCLCs as rovalpituzumab

tesirine [Rova-T]; Morgensztern et al., 2019; Rudin et al., 2017)

and the carcinoembryonic antigen CEACAMC5 (used in other

clinical indications as labetuzumab govitecan; Das, 2017).

DLL3 expression is highly correlated with ASCL1 expression

(p = 0.62), suggesting that targeting DLL3 could be selective to-

ward SCLC-A tumors. CEACAM5 is highly expressed in only a

subset of SCLC-A cell lines that may be potentially sensitive to

labetuzumab govitecan (IMMU-130). Both DLL3 and CEACAM5

show highest expression in SCLC among all GDSC tissue types

(Figure S6). Expression of TACSTD2 (TROP2), which is used as

target for sacituzumab govitecan (IMMU-132) in patients with tri-

ple-negative breast cancer (TNBC), exhibits a low expression

level in all SCLC cell lines, suggesting that TACSTD2 as a tar-

geted receptor may not be efficient in SCLC (Figure S6).

Among potential new targets for the development of ADCs, the

specific NE markers NCAM1, CD24, CADM1, and ALCAM are

highly expressed in non-YAP1 SCLC (Figure 6J), suggesting

the potential of developing ADCs targeting such surface recep-

tors for NE-SCLC and SCLC-P patients. In contrast, the non-

NE surface markers CD151 and EPH2 are highly expressed in

the YAP1 cell lines (Figure 6K), suggesting their potential for

SCLC-Y cancers.

DISCUSSION

SCLC-CellMiner (https://discover.nci.nih.gov/SclcCellMinerCDB/)

provides a unique and first-of-its-kind resource of patient-

derived SCLC cell lines characterized comprehensively using

multi-omics and drug sensitivity. It also includes new high-reso-

lution methylome, detailed in a complementary publication

(Krushkal et al., 2020). SCLC-CellMiner enables interrogation

of different databases. The data are highly reproducible across

databases, which allowed us to build an integrated platform

(‘‘SCLC-Global’’) to examine genomic characteristics and drug

sensitivities across 116 SCLC cell lines.

Patient-derived cancer cell lines remain the most widely used

models and the primary basis to study the biology of cancers.

They enable high-throughput testing of new drugs and determi-

nant-of-response hypotheses. The database of 116 SCLC cell

lines reported here models the genetic and molecular diversity

of SCLC, as exemplified by their stratification across the four

recently proposed subgroups (NAPY classification) (Rudin

et al., 2019).

Several studies of human cancer cell lines have revealed a drift

at the transcriptomic level for individual cell lines over multiple

passages, or passages in different laboratories. This raised the

concern that cancer cell lines bear more resemblance to each

other, regardless of the tissue of origin, than to the clinical sam-

ples that they model. However, several other studies have come

to the opposite conclusion, demonstrating the need for human

cancer cell line panels (Barretina et al., 2012; Neve et al., 2006;

Reinhold et al., 2019;Wang et al., 2006;Weinstein, 2012; Zoppoli

et al., 2012). For lung cancer cell lines, it has been shown that the

genomic drift during culture life is not a dominant feature

https://discover.nci.nih.gov/SclcCellMinerCDB/
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(Wistuba et al., 1999). The recent analyses across SCLC cell

lines, PDX models, and human tissues reported by Rudin et al.

(2019) and our present analyses provide strong evidence that

the molecular features of SCLC are stable .

SCLC is highly proliferative and under replication stress

(Thomas and Pommier, 2016). SCLC-CellMiner confirms that

genes involved in DNA replication such as PCNA and MKI67

are highly expressed in SCLC (Figure S7). We also found evi-

dence of chromatin adaptation in SCLC. Not only are many

core histone gene promoters hypermethylated (Figure 3) but

also H2AFY, a non-canonical histone encoding macroH2A.1, is

highly expressed in SCLC cell lines. Two H2AFY splice variants

have been identified and SCLC cell lines predominantly express

the macroH2A1.2 variant, known to promote homologous

recombination and proliferation (Kim et al., 2018). In the context

of chromatin and histone genes, ACTL6B, which encodes a sub-

unit of the BAF (BRG1/brm-associated factor) complex, is highly

expressed in the SCLC cell lines (Figure S7). The BAF complex is

functionally related to SWI/SNF complexes that facilitate tran-

scriptional activation of specific genes by antagonizing chro-

matin-mediated transcriptional repression. ACTL6B expression

is specific to SCLC and brain tumor cell lines and highly corre-

lated with the expression of other chromatin genes, including

HMGN2, KDM4B, and SMARCA4 (Figure S7). Only the NE cells

express ACTL6B, while the non-NE cells express lowest KDM4B

and SMARCA4. These results suggest that this specific BAF

complex subunit may be critical in determining the cell fate of

NE cells.

Supporting the importance of epigenetics in SCLC carcino-

genesis, SCLC cell lines exhibit distinct promoter methylation

profile. First, they are globally hypomethylated, suggesting their

plasticity. Second, they exhibit a distinct epigenetic profile

compared with NSCLC (Figure 3B). Most genes with lowmethyl-

ation are involved in neuronal pathways, suggesting that NE dif-

ferentiation is driven by promotermethylation. In contrast, Poirier

et al. (2015) reported that SCLCs tend to have high methylation

levels. The apparent discrepancy could be due to the inclusion

of PDX and tumor samples in their study. Also, they did not mea-

sure promoter methylation but the proportion of highly variable

CpGs, leading them to conclude that high methylation instability

is consistent with the plasticity of SCLC (Poirier et al., 2015).

SCLC-CellMiner validates the NAPY classification (Rudin

et al., 2019) and provides insights into the coordinated network

regulated by each lineage transcription factor. Potential up-

stream regulators (super-enhancers, microRNAs, or non-coding

RNAs) may explain the co-expression of ASCL1 with NKX2-1

and PROX1 and YAP1 with TAZ and warrants further investiga-

tions, which can be facilitated by SCLC-CellMiner. Consistent

with the results of Rudin et al. (2019), the NAPY classification

shows that the cell lines driven by ASCL1 and NEUROD1 often

overlap and share common features (Figures 4 and 6). Yet they

differ in their relationship with respect to the NOTCH pathway,

with the SCLC-A cells showing strong negative correlation with

NOTCH genes expression, consistent with NOTCH acting as

negative regulator of ASCL1 (George et al., 2015) (Figure 5).

Transcriptome and drug response analyses highlight the dis-

tinguishing features of the SCLC-Y. In contrast to ASCL1, NEU-

ROD1, and POU2F3, YAP1 is expressed widely across different
tissue types (Figure 4) (Ma et al., 2019), and transcriptome ana-

lyses cluster the SCLC-Y cell lines with NSCLC (Figure 5F).

SCLC-Y cells also express the NOTCH pathway, in contrast to

SCLC-A. This feature could be related to the direct transcrip-

tional activation of the NOTCH pathway by YAP/TAZ (Figure 5C)

(Yimlamai et al., 2014). In addition, SCLC-Y cells do not express

MYCL or MYCN but rather MYC (Figure 4) (McColl et al., 2017;

Mollaoglu et al., 2017). They tend to beRB1wild-type (Figure 5H)

and have lower expression of replication and proliferation genes

than the other SCLC subtypes (Figures S5 and S7). SCLC-Y cells

were also often derived from non-smoking patients (Table S1;

Figure S5). In total, our data suggest that SCLC-Y cell lines are

probably derived from a different cell type compared with the

NE and SCLC-P subgroups. Our findings of differential drug sen-

sitivities on the basis of transcriptional subtypes support this

notion (Figures 6 and S6) and are consistent with recent studies

showing that non-NE and MYC-driven SCLC cell lines are sensi-

tive to PI3K-AKT-mTOR, AURKA, and HSP90 inhibitors (Chalish-

azar et al., 2019; Wooten et al., 2019).

Overall, our data suggest that targeted therapies in patient

subgroups selected on the basis of NAPY stratification may be

beneficial. Additional therapeutic insights can be derived from

our study. First, although SCLC is among the cancer types

with the lowest expression of immune-related genes, the

SCLC-Y cells notably demonstrate high presenting and native

immune predisposition (Figures 6G, 6H, and S6). If verified in

clinical cohorts of immunotherapy-treated patients, this finding

might enable patient selection. Second, we highlight potential

surface markers that could be targeted on the basis of the

NAPY subgroups. For example, SCLC-Y cells express neither

the therapeutically relevant surface epitopes DLL3 or CEACAM5

(Das, 2017; Morgensztern et al., 2019; Rudin et al., 2017), which

tend to be specific for the SCLC-A (and N). However, SCLC-Y

express CD151 and EPHA2 (Figure 6K) and might respond to

the YAP1 and NOTCH inhibitors in clinical development (Craw-

ford et al., 2018; Leonetti et al., 2019).

Our analyses demonstrate the value of cancer cell line data-

bases and imply that updating drug testing with new clinical

drug candidates shall provide valuable information to guide clin-

ical trials. Our results also suggest the potential value of using the

NAPY classification to select patients for targeted therapies. It is

likely that genomic signatures based on transcriptome and pro-

moter DNAmethylation will have to be developed to build reliable

tools to assign samples to each of the NAPY subgroups and

determine their prognostic and therapeutic value.
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Lead Contact
Further information and requests for reagentsmaybedirected toandwill be fulfilledbyLeadContact YvesPommier (pommier@nih.gov).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
The scripts and data used for the analysis can be obtained at https://zenodo.org/record/3959142.

All newly generated methylation datasets are available from the Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/

geo/) under the accession number GEO: GSE145156.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

SCLC-CellMiner is a dedicated CellminerCDB version for SCLC cell lines (Reinhold et al., 2012, 2014, 2017, 2019) https://discover.

nci.nih.gov/cellminercdb/).

The cell line sets included in SCLC-CellMiner Cross-Data-Base (CDB) currently are from the National Cancer Institute SCLC cell

lines from the Developmental Therapeutics ProgramSmall Cell LungCancer Project (SCLCNCI-DTP), Cancer Cell Line Encyclopedia
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(CCLE), Genomics and Drug Sensitivity in Cancer (GDSC), Cancer Therapeutics Response Portal (CTRP), the University of Texas

SouthWestern (UTSW) and a new resource SCLC-Global. The data source details are described in ‘‘Help’’ section of the SCLC-Cell-

Miner website.

Most of the data including drug activity and genomics experiments were processed at the institute of origin and were downloaded

from their website or provided from their principal investigator. The genomic data from CTRP and CCLE are common for the over-

lapping cell lines. However, methylation, mutation and copy number data were processed at Development Therapeutics Branch

(DTB), CCR, NCI to generate a gene level summary as described previously (Barretina et al., 2012; Garnett et al., 2012; Krushkal

et al., 2020; McMillan et al., 2018; Polley et al., 2016). The new Global expression (SCLC-Global) was developed at DTB by merging

the gene expression of all the data sources.

METHOD DETAILS

DNA methylation data
Gene-level methylation using the 850K Illumina InfiniumMethylationEPIC BeadChip array was summarized based on (Reinhold et al.,

2017). In short, methylation data were normalized using the minfi package using default parameters, where probe-level beta-values

and detection p values were calculated for each probe. This provided 866,091 methylation probe measurements. Methylation probe

beta-values for individual cell lines with detection p values > = 10-3 were set to missing. Also probes with median p value > = 10-6

were set to missing for all cells and removed from the analysis. Probe locations on the human genome (hg19 version) defined by Il-

lumina was used for the analysis, annotating proximal gene transcripts and CpG islands. Probes were designated as category ‘‘1’’ or

‘‘2,’’ with category ‘‘1’’ considered to be most informative. Category ‘‘1’’ probes overlapped CpG islands and they overlapped either

the TSS region within a 1.5kb distance, the first exon or 50-UTR region. Additionally, probes on the upstream shore of a CpG island

with a maximal distance of 200bp from the TSS were also included as category ‘‘1’’ probes. Category ‘‘2’’ probes were positioned

either in the upstream- or downstream shore of a CpG island and overlapping the first exon, or on the downstream shore of CpG

islands overlapping a 200bp region from the TSS, or in 50-UTR. In case of genes with multiple transcript start sites, the transcript

methylation with the most negative correlation to the gene level expression was used. The analysis resulted in gene-level methylation

values for 23,202 genes.

Copy number
Genomewide copy number for the cell lines was estimated from themethylation array data using the Chip Analysis Methylation Pipe-

line (ChAMP) (Tian et al., 2017) package. ChAMP returns lists of genomic segments with putative copy number estimates. However,

the estimate is not valid for regions with high methylation detection p values. For this reason, regions spanning more than 1kb with at

least 5 probes with high detection p values (p > 0.05) were filtered out. The copy number estimates were set to missing for those

areas. Gene level copy number (for n = 25,568 genes) was calculated for each gene individually, by calculating the average estimate

between the transcription start sites and transcription end sites.

RNaseq data
The RNA-seq gene expression data from UTSW SCLC were obtained from analyses based on McMillan et al. (2018). The raw data

have been previously submitted to dbGaP (accession phs001823.v1.p1). The paired-end RNA-seq reads from the 70 UTSW SCLC

cell lines were aligned to the human reference genome GRCh38 using STAR aligner (version 2.7), FPKM expression values were

generated with cufflinks (version 2.2.1) (Bullard et al., 2010) and log-transformation.

Global expression data
We generate a new Global SCLC dataset (SCLC-Global) using all combined cell line resources: NCI SCLC, CCLE, CTRP, GDSC and

UTSW. The data sources have a mixture of microarray and RNA-seq gene expression. For each experiment, genes were scaled

across all cell lines to create a z-score normalized dataset. The SCLC-Global expression was calculated by averaging the z-scored

gene expressions from all sources. To test for removal of batch effects by gene scaling (z-score normalization), we clustered the cell

lines based on gene expression using the raw data (Figure S2A) and the normalized data (Figure S2B) in R using the hclust() for clus-

tering, and the ape package (version 5.3) to create the clustering dendrograms.

QUANTIFICATION AND STATISTICAL ANALYSES

Pathway level correlation of expression and DNA methylation
The correlation between methylation and gene expression for multiple functional categories was calculated based on genes in Table

S4 using R programming language. For each category, themedian correlation of the related geneswas calculated to identify potential

categories of interest.
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Predictive power of DNA copy number and methylation on transcript expression
Testing the predictive power of DNA copy number and methylation on transcript expression was performed with linear regression

analysis (as seen in Figure 3E. For each of the 15,798 genes with all three forms of data available (transcript, methylation, and

copy number levels) a linear regression model was fit, with both copy number and methylation as independent variables and tran-

script expression as the dependent variable. The model provided coefficients for the copy number and methylation that gave the

lowest squared error between fitted values and true expression. We separated individual contributions of these two factors for

gene expression prediction using the method of relative importance (Gromping, 2006), using the lmg method (Bacher, 1980) from

the R package relaimpo to compute individual R2 values. Total (or combined) R2 is the summation of these two. Square roots of

the R2 values were multiplied by the sign of the coefficients of the factors in the combined model to get the value of R.

Methylome cluster analysis
The methylation cluster analysis was performed using the methylation data from the NCI-SCLC cell lines, GDSC lung cancer (SCLC

and NSCLC) cell lines and the NCI-60 cell lines. Genes with high standard deviation (> 0.25) in the GDSC lung cancer cell lines were

selected for the analysis. The number of reported clusters was selected based on the cutreeDynamic() function of the dynamicTree-

Cut R package (v1.63-1), which split genes into 5 main clusters and cells into 3 main clusters (as reported in the figure). The methyl-

ation heatmap was created with the ComplexHeatmap (Gu et al., 2016) R package (version 1.20.0).

SCLC subtypes and heatmaps
The SCLC cell lines were classified into the NAPY subtypes using the expression of NEUROD1, ASCL1, POU2F3 and YAP1 with the

SCLC-Global expression dataset. Clustering was performed using distance matrix based on Euclidean distance and ‘‘ward.D’’ clus-

tering using the hclust() function in R programming language.

SCLC neuroendocrine score
Cell line neuroendocrine score was calculated based the method reported in Zhang et al. (2018) that uses a gene set of 25 neuroen-

docrine and 25 non-neuroendocrine genes for classification. For each cell line, the expression values of genes were correlated with

the expression averages of neuroendocrine [NE] cells and non-neuroendocrine [non-NE] cells from Zhang et al. (2018). The NE score

was calculated with the following formula:

NEscore =
correlð½Xi�; ½NE�Þ � correlð½Xi�; ½nonNE�Þ

2

where Xi denotes the gene expression values of cell line i, [NE] is the mean expression of genes in neuroendocrine cells from Zhang

et al. (2018) and [nonNE] is the mean expression of genes in non-neuroendocrine cells from Zhang et al. (2018). The R script that

calculates the NE score from the SCLC-Global expression data is available in the supplementary materials.

t-SNE clustering of GDSC lung cell lines using gene expression
SCLC and NSCLC cell line grouping was performed with the gene expression data from the GDSC microarray dataset using the t-

SNE algorithm in R (v3.5.1). The random seedwas set to 1, the Euclidean distance of geneswas calculatedwith the dist() functionwith

default settings. The t-SNE groupingwas calculated using theRtsne() function from theRtsne (van derMaaten, 2014) package (v0.15)

using the calculated distance matrix, with perplexity set to 10, and 5k maximum iterations.

Clustering drug data of NCI-SCLC cell lines
SCLC cell line expression heatmaps for the SCLCmarkers, NAPY genes andMYC genes were done using theComplexHeatmap (Gu

et al., 2016) R package (version 1.20.0).

The NCI SCLC drug activity heatmap was generated using R. First, drugs with coefficient of variation less or equal to 0.09 were

filtered out. Then the remaining data for the selected 134 drugs (from originally 527) across the 66 SCLC lines were clustered using

the hierarchical method based on Euclidean distance and complete linkage.

Gene set enrichment analysis and GSEA analysis
A preranked gene set enrichment analysis was run in R using the clusterProfiler (Yu et al., 2012) and ReactomePA (Yu and He, 2016)

packages. Pathways with an adjusted p value below 0.05 were considered as significantly enriched. Single sample gene set enrich-

ment score (APM score) was computed using the R package GSVA (version 1.28.0).

A pre-ranked gene set enrichment analysis (GSEA version 4.0.3) was performed for the correlation between the gene expression

andmethylation across all the NCI SCLC cell lines. The score was 1/p value if correlation was positive and�1/p value otherwise. The

gene sets included our DTB 21 gene sets with the Hallmark, C2 (pathways) and C5 (GO) GSEA signatures. The analysis was done

using the classic enrichment statistic with a minimum gene set size of 15 and a maximum of 1000.
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Statistical methods
Correlations, heatmaps, and histograms were generated mostly using The R Project for Statistical Computing. Some plots and anal-

ysis (such as the Kruskal Willis test) were generated using Partek Genomics suite v7.17.1222 (https://www.partek.com/

partek-genomics-suite/) or using SCLC-CellMiner and CellMinerCDB (https://discover.nci.nih.gov/cellminercdb).

Wilcoxon rank-sum tests were used to test the difference between continuous variables such as drug sensitivity and gene expres-

sion according NAPY classification. We considered changes significant if p values were below 0.05. In the figures, p values below

0.00005 were summarized with four asterisks, p values below 0.0005 were summarized with three asterisks, p values below

0.005 were summarized with two asterisks and p values below 0.05 were summarized with one asterisk. The scripts and data

used for the analysis can be obtained at https://zenodo.org/record/3959142.
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