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Integrative epigenomic analyses of small cell lung
cancer cells demonstrates the clinical translational

relevance of gene body methylation

Enhancers Genes

Inactive
Non-expressed genes

aiieqsnmne LI 1 1 11

CpG me
0 0 00000 o ) 6o o o
& & ) &
,60% O\' oo ééo
\) 4 o® o
Q
PTFs
(ASCL1 .
NEUROD1 \
POU2F3)

Expressed genes

’ EBAN 1t 1.

Active
enhancer .
|—= Genes overlapping
K27Ac o super-enhancers

H3K27 acetylation

T %000 o o

ChGme e ammm

(S S )
H3K27ac —_— : S @ S &
Interaction with proximal O 0 S
promoters/enhancers OQQ Q@ & &
@ H3K27 acetylation © °

, CpG methylation

Lorinc S. Pongor,
Camille Tlemsani,
Fathi Elloumi, ...,
John D. Minna,
Jane E. Johnson,
Yves Pommier

pommier@nih.gov

Highlights
Methylome signatures
differentiate SCLC
subtypes

Gene body methylation is
highly predictive of gene
expression

Genic Super-Enhancer
regions are associated
with local demethylation

The EPICmethylation
array clinically available

Pongor et al., iScience 25,
105338

November 18, 2022
https://doi.org/10.1016/
j.isci.2022.105338



mailto:pommier@nih.gov
https://doi.org/10.1016/j.isci.2022.105338
https://doi.org/10.1016/j.isci.2022.105338
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2022.105338&domain=pdf

iIScience

Integrative epigenomic analyses of small cell

lung cancer cells demonstrates the clinical

¢? CellPress

OPEN ACCESS

translational relevance of gene body methylation

Lorinc S. Pongor,! Camille Tlemsani,"-? Fathi Elloumi,” Yasuhiro Arakawa,’ Ukhyun Jo," Jacob M. Gross,’
Sara Mosavarpour,’ Sudhir Varma,' Rahul K. Kollipara,® Nitin Roper,’ Beverly A. Teicher,* Mirit |. Aladjem,’
William Reinhold," Anish Thomas,"' John D. Minna,> Jane E. Johnson,® and Yves Pommier’./-*

SUMMARY

DNA methylation is a key regulator of gene expression and a clinical therapeutic
predictor. We examined global DNA methylation beyond the generally used pro-
moter areas in human small cell lung cancer (SCLC) and find that gene body
methylation is a robust positive predictor of gene expression. Combining pro-
moter and gene body methylation better predicts gene expression than pro-
moter methylation alone including genes involved in the neuroendocrine classifi-
cation of SCLC and the expression of therapeutically relevant genes including
MGMT, SLFN11, and DLL3. Importantly, for super-enhancer (SE) covered genes
such as NEUROD1 or MYC, using H3K27ac and NEUROD1, ASCL1, and
POU2F3 ChiP-seq data, we show that genic methylation is inversely proportional
to expression, thus providing a new approach to identify potential SE regulated
genes involved in SCLC pathogenesis. To advance SCLC transitional research,
these data are integrated into our web portal (https://discover.nci.nih.gov/
SclcCellMinerCDB/) for open and easy access to basic and clinical investigators.

INTRODUCTION

Small cell lung cancers (SCLCs) account for approximately 13% of all lung cancers (Govindan et al., 2006;
Poirier et al., 2020), and are highly metastatic and rapidly chemoresistant (Gazdar et al., 2017; Sabari
et al., 2017). Their genetic landscape is different from other lung cancers, with few activating driver muta-
tions in oncogenes, near-universal loss of function-mutational prevalence in TP53 and RB1 tumor suppres-
sor genes, and overexpression of cellular proliferation and replication pathways (Tlemsani et al., 2020).
Many SCLCs also have increased copy-number changes in members of the MYC oncogene family, and/
or disruptive mutations in chromatin remodeler and epigenetic genes such as histone lysine methyltrans-
ferases (KMT2D and KMT2C), and histone acetyltransferases (EP300, CREBBP) (George et al., 2015).

SCLC tumors and patient-derived cell lines and xenografts (PDXs) have recently been classified into four
main subtypes based on the expression of 4 lineage-defining transcription factors (LTFs): NEUROD1,
ASCL1, POU2F3, and YAP1 (briefly referred to as “NAPY") (Rudin et al., 2019; Tlemsani et al., 2020). Further
studies differentiate SCLC into ASCL1, NEUROD1, POU2F3 subtypes, and the inflammatory subtype, which
benefits from combined chemotherapy and immunotherapy (Gay et al., 2021). The NEUROD1 and ASCL1
subtypes have a neuroendocrine (NE) phenotype, with elevated expression of NE markers including syn-
aptophysin and chromogranin A. The POU2F3 and YAP1 subtypes are non-NE, with elevated NOTCH
pathway expression and low expression of NE markers (Pozo et al., 2021; Tlemsani et al., 2020). Binding
of the LTFs to many distinct sites in the genome has been proposed to act as enhancers and regulate
different gene expression pathways that characterize each of the subtypes of SCLCs (Borromeo et al.,
2016; Chakraborty et al., 2018; Pozo et al., 2021; Tlemsani et al., 2020).

The subtype classification of SCLC is not routinely implemented in clinical practice owing to limited access
to well-preserved tumor tissues to perform immunohistochemistry analyses with many diagnostic biopsies
coming from needle aspirations (Qu et al., 2022). RNA-seq analyses are also not routinely utilized to classify
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the greater stability of DNA over RNA, DNA analyses are being effectively tested to classify subtypes of
cancers, such as sarcomas (Koelsche et al., 2021). Taking advantage of the well-documented genomic da-
tabases of SCLC cell lines (Gay et al., 2021; George et al., 2015; Rudin et al., 2019; Tlemsani et al., 2020), we
asked whether DNA methylation analyses based on the clinically used MethylationEPIC array could provide
novel insights in the genetic regulatory pathways of SCLCs and be used as a classifier and therapeutic
guide for SCLCs.

DNA methylation is used clinically to correlate survival (Gevaert et al., 2015; Hao et al., 2017), as well as drug
response (Bacolod and Barany, 2021; Butler et al., 2020; Krushkal et al., 2020; Ortiz-Barahona et al., 2020).
To that effect, O®-methylguanine (0%-MeG)-DNA methyltransferase (MGMT) promoter methylation is an
established prognostic biomarker in glioblastomas treated with temozolomide (Butler et al., 2020), while
Schlafen (SLFN11) expression inactivation through promoter methylation leads to resistance to PARP inhib-
itors and DNA damaging agents including etoposide, cisplatin, topotecan and lurbinectedin that are used
as a standard of care for SCLCs (Kundu et al., 2021; Murai et al., 2016, 2019; Nogales et al., 2016; Tang et al.,
2018). Although the DNA methylation of promoters is commonly used to predict the lack of gene expres-
sion (Butler et al., 2020; Esteller, 2021), in many cases it can give an incomplete picture when the promoters
of non-expressed genes are not hypermethylated (Butler et al., 2020; Reinhold et al., 2017; Tang et al.,
2018). Although many methylation probes in the 450k and 850k array platforms, widely used for detecting
the methylation of specific gene regions, are outside of promoters, there have been limited analyses and
use on their quantitative relationship with gene expression and on their potential translational value to pre-
dict gene expression (Lister et al., 2009; Spainhour et al., 2019; Su et al., 2018). Yet, gene body methylation
has been shown to reflect gene activity (Bacolod and Barany, 2021; Yang et al., 2014), suppress alternative
transcript isoforms by blocking promoters, and to regulate splicing (Huang et al., 2021; Lev Maor et al.,
2015; Li et al., 2018; Neri et al., 2017; Teissandier and Bourc'his, 2017; Yang et al., 2014).

Studies have begun to explore the epigenetics of SCLCs by mapping the binding sites of the LTFs (Borro-
meo et al., 2016; Huang et al., 2018), the enhancers based on histone H3 lysine 27 acetylation (H3K27ac)
(Pozo et al., 2021), and promoter DNA methylation (Krushkal et al., 2020; Tlemsani et al., 2020). To expand
our understanding of how gene expression is regulated in SCLC and determine the potential translational
value of the MethylationEPIC 850k array, we took advantage of the SCLC cell line databases (https://
discover.nci.nih.gov/SclcCellMinerCDB/) and integrated whole genome DNA methylation (Krushkal
et al., 2020; Tlemsani et al., 2020), enhancer H3K27ac ChlIP-seq (Huang et al., 2018; Pozo et al., 2021)
and ChlP-seq for the three main LTFs driving SCLC pathogenesis (ASCL1, NEUROD1, and POU2F3) (Bor-
romeo etal., 2016; Huang et al., 2018). We developed algorithms to automatically quantify the levels of pro-
moter and gene body methylation, as well as copy number and promoter acetylation for each gene. And for
each epigenetic marker (DNA methylation, H3K27Ac, and ChIP-seq for ASCL1, NEUROD1, and POU2F3),
we analyzed their genomic distribution and demonstrate how they mutually predict gene expression. The
data are integrated in a public web-based genomic platform in our CellMinerCDB ecosystem (Luna et al.,
2021), enabling individual researchers and clinicians to explore genomic and drug response correlations
across the NCI, UT Southwestern, Broad-MIT (CCLE), and Welcome-Sanger databases (https://discover.
nci.nih.gov/SclcCellMinerCDB/).

RESULTS

General overview of the small cell lung cancer cell line methylome data and classification of
small cell lung cancer cell lines based on their methylome

High-resolution DNA methylation (EPIC 850K array) was obtained for 68 different SCLC patient-derived cell
lines (Krushkal et al., 2020; Tlemsani et al., 2020), H3K27ac data for 18 SCLC lines (Huang et al., 2018; Pozo
etal., 2021) and ASCL1, NEUROD1, and POU2F3 ChlIP-seq for 6 SCLC lines (Borromeo et al., 2016; Huang
et al.,, 2018). We analyzed each dataset and studied their predictive value as classifiers of SCLCs and pre-
dictors of gene expression. The data included in the present study are summarized in Figure 1A and
Table S1; they are publicly accessible in the updated version (v.1.1) of SCLC_Cellminer (https://discover.
nci.nih.gov/SclcCellMinerCDB/).

The EPICmethylation 850K array probes are not only in promoters (40.6%), but also in genic areas (35.2%)
and intergenic regions (24.2%) (Figure 1B). Compared to the 450K array, the higher resolution of the EPIC
850K methylation array has more than double the coverage in genic areas (Figure STA). The comparison of
the methylation levels of different genomic regions across all SCLC lines shows that DNA methylation
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Figure 1. Overview of cell lines utilized in the study

(A) Data types available for each cell line (gene expression, DNA methylation, and H3K37ac) and their neuroendocrine status and NAPY classification.

(B) Pie chart of EPIC 850K array DNA methylation probe annotation distribution.

(C) Distribution of probe hypermethylation fraction in each cell stratifying by genomic regions using the EPICmethylation 850K array compared using
Wilcoxon signed-rank test.

(D) UMAP clustering of cell lines using all methylation probes. YAP1 cell lines cluster with NSCLC cell lines.

(E) Correlation (Pearson) of MGMT expression and promoter methylation in the 66 SCLC cell lines from the NCI-DTP panel (snapshot from https://discover.
nci.nih.gov/sclccellminercdb).

(F) Methylation probes at the MGMT promoter in 5 cell lines (2 with high and 3 with low MGMT expression).

probes overall tend to be hypermethylated, with approximately 58.4% (40.3-70%) of probes with beta
value > 0.5 (Figure 1C, Table S2). This may be related to the fact that cell lines from SCLC express signif-
icantly higher levels of DNMT1 and DNMT3A (and DNMT3B) compared to other cancers (Figure S1B). Yet,
as expected, CpG islands and promoters tend to be hypomethylated (median 22.9 and 48.4%, respectively)
compared to gene body and intergenic regions (median 78%) (Figures 1C and S1C; Table S2).

DNA methylation has been previously used to cluster cell lines based on the tissue of origin (Ghandi et al.,
2019). Thus, we assessed whether the genome-wide EPICmethylation array would differentiate SCLC sub-
types. Although the non-neuroendocrine YAP1 and NSCLC cell lines showed distinct clustering, the SCLC
celllines showed limited clustering based on their NE status using UMAP clustering of all probes (Figure 1D,
Table S3). As expected, some NEUROD1 cell lines with dual ASCLT-NEUROD1 expression (Figures S1D
and S1E, Table S3) clustered with the ASCL1 subgroup (Figure S1D, green arrowheads) (Tlemsani et al.,
2020). UMAP clustering using CpG, promoter, gene body, and intergenic probes yielded similar results.
In case of gene body and promoter probes the NEUROD1 cell lines that did not express ASCL1 had a better
separation from the ASCL1 cluster (Figure STE). Overall, we conclude that the methylation array has limited
value in clustering cells into subtypes.

Studies comparing gene expression and DNA methylation classically focus on the methylation of pro-
moters, where hypermethylation is associated with low gene expression (Ortiz-Barahona et al., 2020; Rein-
hold et al., 2017). Yet, for many genes and across cell lines, we observed that low gene expression was
observed despite low promoter methylation. This is illustrated in Figures S1F and S1G for the therapeutic

iScience 25, 105338, November 18, 2022 3


https://discover.nci.nih.gov/sclccellminercdb
https://discover.nci.nih.gov/sclccellminercdb

¢? CellPress

OPEN ACCESS

response predictor Schlafen 11 (SLFN1T1T) (Murai et al., 2019) and the mesenchymal Vimentin (VIM) genes. To
extend this finding genome-wide, we selected the genes with highest SD bimodal gene expression distri-
bution (Figure STH), finding that more than 50% of the low-expressing cell lines showed hypomethylated
promoters.

Among those genes where lack of expression fails to highly correlate with promoter hypermethylation is
the methylguanine methyl transferase gene (MGMT), which is routinely analyzed in the context of temozo-
lomide treatments (Butler et al., 2020; Farago et al., 2019; Ortiz-Barahona et al., 2020). MGMT showed a
relatively low negative correlation (although significant) between promoter methylation and gene expres-
sion (Figures 1E and STH). Detailed examination of the methylation probes in the promoter area of MGMT
revealed that highly expressing cell lines showed consistent CpG hypomethylation, while cell lines with low
expression displayed variable promoter methylation (Figure 1F). In addition, comparing the methylation
(probe) distribution across the MGMT locus showed hypermethylation of genic probes in the highly ex-
pressing cells (Figure S11). These observations indicate that promoter hypomethylation does not accurately
predict gene expression and thus must be controlled by additional epigenetic regulatory mechanisms.

Relationship between gene body methylation and gene expression

To explore the relationship between DNA methylation in gene bodies and gene expression (Teissandier
and Bourc'his, 2017), we focused on the distribution of DNA methylation by comparing methylation in pro-
moter (—2.5kb-2.5kb area around transcription start sites), gene body (genic area excluding promoter re-
gions) and upstream (5kb window upstream of promoter regions) and downstream (5kb window down-
stream of transcription end sites) regions of genes. Stratifying a large number of genes based on their
expression showed a marked difference in overall DNA methylation patterns (Figure 2A). As expected,
highly expressed genes showed hypomethylation centered in promoters (upper tracings in Figure 2A),
while promoter hypermethylation was observed in lowly expressed genes (lower tracing in Figure 2A).
Notably, the gene body of highly expressed genes was consistently hypermethylated (top tracings), while
gene bodies were significantly less methylated and more variable in genes with low or no expression (bot-
tom tracings in Figure 2A). These methylation profiles were similar in all cell lines in the SCLC database, and
the methylation types were reproducible using reduced bisulfite sequencing data obtained from the CCLE
(Ghandi et al., 2019) (Figures S2A-S2C). The bisulfite data are also available in CellMinerCDB (https://
discover.nci.nih.gov/cellminercdb) (Luna et al., 2021).

As gene body methylation was consistently associated with expression for many genes, we created a gene-
level summarization algorithm of gene body methylation taking into account all probes instead of using a
single-probe approach (Bacolod and Barany, 2021; Krushkal et al., 2020), and which can be used to assess
independently promoter and gene body methylation. We included gene body probes outside of pro-
moters, excluding CpG island overlapping probes, which tend to be hypomethylated (see Figure 1). In
cases where a gene had multiple transcripts, we selected the transcript with the most positive correlation
between gene body methylation level and gene expression. Only a very small number of very short genes
such as ASCL1T could not be analyzed for gene body methylation because of insufficient probe coverage.
Based on this approach, we were able to provide scores for both gene body and promoter methylation and
integrated these features in SCLC-CellMinerCDB (https://discover.nci.nih.gov/sclccellminercdb).

Using the genome-wide methylome data from all 66 SCLC cell lines (see Figure 1A), we compared pro-
moter and gene body methylation as a function of gene expression. The gene promoter methylation values
and gene expression data were obtained from the SCLC-CellMinerCDB website (Tlemsani et al., 2020).
Non-expressed genes across all SCLC cell lines (Figure 2B, left) clustered in 3 distinct groups: genes meth-
ylated both on the promoter and gene body (upper right quadrant), genes with no methylation at all (bot-
tom left), and genes with both promoter hypomethylation and gene body methylation (upper left). By
contrast, highly expressed genes (Figure 2B, right) were found to be hypomethylated on their promoters
and consistently hypermethylated in their gene bodies. These analyses demonstrate that analyzing pro-
moter methylation (bmt) is insufficient to accurately predict gene expression and that adding gene body
methylation improves the gene expression correlation.

Figure 2C illustrates the relationship of gene expression and DNA methylation for specific genes exhibiting

different expression ranges. Topoisomerase |l-alpha (TOP2A) or beta-2-macroglobuin (B2M), which are
housekeeping genes highly expressed across cell lines show the lack of promoter methylation and high
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Figure 2. Relationship between gene body methylation, promoter DNA methylation, and gene expression

(A) Genic distribution of DNA methylation based on gene expression quintiles in NCI-H69 cells.

(B) Promoter and gene body methylation distribution in non-expressed, lowly expressed, and highly expressed genes.

(C) Heatmaps of promoter and gene body methylation in genes with low (left) or high range (right) of expression. For each gene, cell lines were sorted based
on expression from low to high. The heatmaps on the left show promoter and gene body methylation for highly expressed genes (TOP2A and B2M) and non-
expressed genes (DIRC1 and CRISP3). Heatmaps on the right demonstrate genes with high range of expression.

(D) Relationship of promoter and gene body methylation (Pearson correlation), and gene expression for YAP1 across the 66 NCI-DTP cell lines.

(E) Expression of YAP1 based on promoter and gene body methylation categories from panel D.

(F) Representative examples where gene body methylation predicts gene expression better than promoter methylation (Pearson correlation).

gene body methylation, as expected (Figure 2C, upper left). By contrast, genes that are generally not ex-
pressed, such as DIRCT and CRISP3 show concomitant hyper- or hypomethylation of both promoters and
gene bodies (Figure 2C, bottom left). Additional examples demonstrating this concomitant hyper- and hy-
pomethylation for low-expression genes are shown in Figure S2D for the GLT8D2, EYS and GJAS8 genes.
We also observed that the expression of genes with high range of expression such as MGMT, SLFN11,
and NOTCH1 shows highest correlation with gene body methylation (Figure 2C, right) rather than pro-
moter hypomethylation. Together these results stress the relevance of gene body methylation as a predic-
tor of gene expression.

Analyzing YAP1, a driver gene for a subset of non-NE SCLCs (Rudin et al., 2019; Tlemsani et al., 2020) re-
veals that YAP1-expressing cell lines have no hypomethylated promoter with a hypermethylated gene
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body (“Active” group) (Figures 2C and 2D). Many YAP1 non-expressing cell lines have either hypermethy-
lation (“Hyper" group) or hypomethylation (“Hypo" group) of the YAPT promoter and gene body. There are
some cell lines that do not express YAPT with a hypermethylated promoter and hypomethylated gene body
("Divergent” group). Thus, overall, the methylation categories based on both promoter and gene body
methylation reveal that the “active” (low promoter methylation with high gene body methylation) group
predicts the expression of YAPT (Figure 2E).

Additional examples where gene body methylation predicts gene expression better than promoter methyl-
ation are provided in Figure 2F for MGMT, SLFN11 and the cell surface glycoprotein and cancer biomarker
CEACAMS, which is selectively expressed in neuroendocrine SCLC cell lines (Tlemsani et al., 2020). Thus,
scoring gene body methylation in addition to promoter methylation can be particularly helpful to predict
gene expression for genes with a wide range of expression, and this feature has been implemented in our
new SCLC-CellMinerCDB release (v.1.1) along with other features that are listed in Table S4 (https://
discover.nci.nih.gov/SclcCellMinerCDB/).

Enhancer and small cell lung cancer-lineage-defining transcription factors distributions
and their relationship with DNA methylation

Because histone post-translational modifications are key epigenetic regulators, we integrated into our
methylome analysis the recently available H3K27ac ChIP-seq data (Pozo et al., 2021) for eighteen of the
SCLC cell lines (see Figure 1A). Our analysis identified ~239,000 enhancers defined by H3K27ac peaks,
which are mainly localized in intergenic and gene body areas, with a relatively small fraction in promoters
(Figure 3A).

Phylogenic analysis of the H3K27ac data for the enhancers with highest range of signal intensity (to reduce
background noise) across cell lines showed that the cell lines formed three main clusters, differentiating the
ASCL1, NEUROD1, and POU2F3 subtypes, and confirming the distinct enhancer signatures of the SCLC
subtypes, in agreement with the recently published super-enhancer analysis (Pozo et al., 2021). Cluster
heatmap representation of the H3K27ac signals based on the 4 subtypes ASCL1, NEUROD1, POU2F3,
and YAP1 produced 4 main clusters (Figure 3C; Table S5). HOMER sequence motif analysis revealed
that clusters 1, 2 & 3 are significantly enriched for the DNA sequence motifs of ASCL1, POU2F3, and
NEUROD1 (Figure 3C, right). The fourth enhancer cluster (cluster 4) mainly differentiates the NE and
non-NE subtypes, with enrichment in promoter areas (Figure S3A). Differential GO analysis showed enrich-
ment in neuronal pathways for the ASCL1 and NEUROD1-specific enhancers, and enrichment of the extra-
cellular matrix organization and YAP1-TAZ pathways for the non-NE clusters (Figure S3B).

UMAP clustering of the enhancers with highest range of signal intensity across cell lines differentiated 2
main groups of enhancers: enhancers bound in promoter sites vs. non-promoter sites (Figure S3C, left,
red points). Notably, enhancers matching the SCLC-LTF subtypes (ASCL1, NEUROD1, and POU2F3)
were found enriched with non-promoter sites (Figure S3C, right). These data are consistent with the pres-
ence of multiple sites of specific enhancers and super-enhancer (SE) for each of the subtypes of SCLC cell
lines located outside of promoters (Pozo et al., 2021).

To analyze the relationship between H3K27 acetylation (enhancers and SEs) and the SCLC-LTFs, we
analyzed the ChlIP-seq data obtained for ASCL1, NEUROD1, and POU2F3 in the 6 cell lines with overlap-
ping data (see Figure 1A) (Borromeo et al., 2016; Huang et al., 2018). Like the H3K27ac histone marks,
most sites were distributed in intergenic regions or within gene bodies. Yet, the binding sites of ASCL1,
NEUROD1, and POU2F3 showed minor overlap (Figure 3D), which is consistent with the sequence speci-
ficity and specific distribution of each SCLC-LTF (Borromeo et al., 2016). Consistent with published results
(Borromeo et al., 2016), the ASCL1, NEUROD1, and POU2F3 binding sites were found mainly localized
outside of promoters (Figure 3A). Alignment of the genomic tracings for three representative cell lines cor-
responding to each subtype (NCI-H889 for ASCL1, H82 for NEUROD1 and H1048 for POU2F3) shows that
the ASCL1, NEUROD1, and POU2F3 binding sites do not overlap with each other (Figure 3E). Furthermore,
alignment with the H3K27ac data shows that the differential distribution of the LTF sites is concordant with
enhancer signals in each of these regions (Figure 3E). For instance, regions bound by ASCL1 have matching
active enhancers in NCI-H889 cells, but not in the other cell lines. Similar distribution could be seen in the
case of the NEUROD1 sites in NCI-H82 cells and of the POU2F3 sites in NCI-H1048 cells (Figure 3E). Also,
for each SCLC-LTF, the sites of LTF binding are within a short central segment with reduced H3K27ac signal
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Figure 3. Enhancer landscapes in SCLC cell lines

A) Distribution of the binding sites of H3K27ac (enhancers) and the 3 LTFs ASCL1, NEUROD1, and POU2F3 identified from ChlIP-seq data.

B) Phylogenetic distance analysis of cell lines using the most variable enhancer sites.

C) Heatmap of most variable enhancer sites (H3K27ac). HOMER motif analysis results are shown at right for each cluster.

D) Limited overlap of the ASCL1, NEUROD1, and POU2FS3 sites.

E) Heatmap of ASCL1, NEUROD1, and POU2F3 specific binding sites (LTF ChIP-seq) overlayed with enhancer activity (H3K27ac ChIP-seq).

F) DNA methylation and H3K27ac mean tracings centered to ASCL1 (NCI-H889), NEUROD1 (NCI-H82), and POU2F3 (NCI-H1048). Hypomethylation can be

seen at the binding sites, with a valley of H3K27ac.
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corresponding to the LTF binding peaks (Figures 3E and 3F). The few overlapping binding sites across the
three SCLC-LTFs show that the shared enhancers had the same lack of H3K27ac signal at the SCLC-LTF

binding peaks (Figure S3E).

To establish the potential relationship between LTF-specific enhancers and DNA methylation, we overlaid
the DNA methylation tracings with each of the SCLC-LTF enhancer regions. This showed that the summits
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of the ASCL1, NEUROD1, and POU2F3 ChlIP-seq peaks are characterized by a dip in DNA methylation,
consistent with the possibility that the SCLC-LTFs only bind unmethylated DNA sites outside of promoters
and are flanked by hyperacetylated H3K27 regions (Figure 3F).

H3K27 promoter acetylation and gene expression

For the enhancers localized in gene promoters (~40,000 sites corresponding to ~30% of the total H3K27ac
signals; see Figure 3A), enhancer signals (H3K27ac) were found positively correlated with gene expression
and inversely correlated with DNA methylation (Figure 4A). Highly expressed genes displayed the highest
levels of H3K27ac signal, and genes with intermediate expression across cell lines displayed intermediate
H3K27ac signal (Figure 4A). Figure 4B (right panels) shows representative genomic tracings and quantita-
tive analyses performed automatically on the CellMinerCDB web portal (https://discover.nci.nih.gov/) for
MGMT and SLFN11. As expected, promoter acetylation is generally highly correlated with gene expression
for effector genes.

Promoter enhancer signals for the SCLC-LTF genes were also closely correlated with the subtypes of SCLCs
(Figure 4C), and selected SCLC-relevant genes including the MYC genes (MYC, MYCL, and MYCN), the NE
SCLC markers (SYP, INSM1, and CHGA) and the NOTCH genes (NOTCH1, NOTCH2 and NOTCH3) all dis-
played tight correlation between promoter enhancer H3K27ac signals and gene expression (Figure S4A).

Additionally, the super enhancer (SE) signals for ASCL1, NEUROD1, and POU2F3 (Pozo et al., 2021) re-
vealed overlap for each set of SE in the corresponding subtypes, correlating with the expression levels
of each of the LTFs (Figure S4B). Exploring further the relationship between enhancers determined by
H3K27ac and DNA methylation, we observed that DNA methylation probes overlapping enhancers tend
to be hypomethylated compared to non-enhancer sites regardless of their localization (promoters, gene
bodies, and intergenic regions as well) (Figure S4C). We also observed that in the case of strong enhancers
(and SEs) covering entire genes, the gene body methylation probes tended to be hypomethylated. This can
be seen in the case of NEUROD1 and NKX2-1, where cell lines with high genic H3K27ac signal show low
gene body methylation, resulting in a negative correlation between gene expression and gene body
methylation (Figures 4D and 4E). These observations demonstrate that gene body methylation, which
for most expressed genes is closely associated with transcription, is low in genes that are covered by en-
hancers and/or super enhancers like NEUROD1.

To facilitate further analyses, we generated a gene-level H3K27ac summarization algorithm, which is imple-
mented in SclcCellMinerCDB version 1.1 (https://discover.nci.nih.gov/cellminercdb). This feature was used
to generate the plots and statistical analyses shown in the right panels of Figures 4B, 4D, and 4E. We also
used this algorithm to compare promoter H3K27ac, promoter, and gene body methylation and copy num-
ber (CNV) with gene expression. Promoter enhancer signal shows the strongest correlation with gene
expression (Figure 4F). Gene body methylation shows better predictive power over promoter methylation
in the case of genes with high range of expression; yet promoter methylation has slightly better overall pre-
dictive power when including all genes (Figure S4D). Copy-number data showed the overall lowest corre-
lation with gene expression when comparing genes with high range of expression.

Exploring the EPICmethylation array for precision medicine of small cell lung cancer

Based on the premise that two potential key elements of precision medicine are: 1) the classification of tu-
mors in subgroups with well-defined pathways, and 2) Omics-driven therapies (Jo et al., 2021), we tested
the potential of the EPIC 850k methylome array in the context of the SCLC cell lines as pilots for expansion
studies in patient samples.

Regarding the classification of SCLCs, we used the “Multivariate Analyses” web tool of SclcCellMinerCDB
to explore the predictive value of the EPIC array. Figure 5 displays snapshots that can be readily obtained
by readers and users (https://discover.nci.nih.gov/sclccellminercdb). For NEURODT, both promoter and
gene body methylation give a highly significant prediction (p value = 1.3e-08) (Figure 5, upper left). As ex-
pected, promoter methylation (abbreviated “mth”) was negatively correlated with NEUROD1 expression.
Gene body methylation (abbreviated "bmt") is also highly correlated with NEUROD1 expression, as the
NEURODT1 gene coincides with an SE (see section above and Figure 4D). Highly significant prediction is
also observed for YAPT and ASCL1 (Figure 5, middle left). In the case of YAP1, promoter methylation is
highly predictive and gene body methylation is positively correlated with expression, as expected (see
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Figure 4. Enhancer signals (H3K27ac) in promoters strongly predict gene expression

(A) Summary of genic H3K27ac and DNA methylation distribution based on gene expression. Highly expressed genes have highest promoter H3K27ac
signal.

(B) Representative H3K27ac tracings at the MGMT and SLFN11 promoters for cell lines with different transcript levels. Plots at right are snapshots from
SclcCellMinerCDB for the different NCI-DTP cell lines.

(C) Promoter enhancer signal intensity (derived from H3K27ac) strongly correlates with the expression of the SCLC-LTFs, ASCL1, NEUROD1, POU2F3, and
YAP1.

(D and E) Enhancers and super-enhancers covering entire genes (NEUROD1 and NKX2-1 shown here) are associated with hypomethylation for the
representative cell lines (tracings) and for the 66 cell lines in the database (plots are snapshots from SclcCellMinerCDB).

(F) Correlation summary of gene expression and H3K27ac, DNA promoter and gene body methylation and copy-number data using genes with the most

variable expression.
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Figure 5. Predictive value of gene body and promoter DNA methylation to classify SCLC and assess the expression of therapeutically relevant
genes

The Multivariate Analyses tool of SclcCellMinerCDB (https://discover.nci.nih.gov/sclccellminercdb) was used to generate the analyses and panels
(snapshots from the website). Queried genes are listed above each panel. The bottom panel shows the SLFN11 gene body and promoter methylation as
predictors for topotecan response in the 66 SCLC cell lines from the NCI-DTP database. Insets below each plot show technical details and significance for
gene body methylation (bmt) and promoter methylation (mth). Asterisks indicate statistical significance.

above) for genes not covered by an SE. For ASCL1, which is a short gene for which no gene body probes
could be assigned, the predictive value of promoter methylation was very high (p value = 6.1e-10).
Together, these analyses demonstrate the predictive value of the EPICmethylation array for SCLC classifi-
cation based on their LTFs.

The predictive value of the EPIC array was tested for several therapeutically applicable genes (Figure 5,
right and bottom panels). The expression of DLL3, which is specifically expressed in ASCL1-SCLC (Rudin
et al., 2019; Tlemsani et al., 2020) and targeted by small molecules and radioligands (Morgensztern
etal., 2019; Tully et al., 2022) can be predicted with high significance (p = 7.9e-10) by combining promoter
(mth) and gene body (bmt) methylation (Figure 5, upper right). Lack of expression of MGMT, which predicts
response to temozolomide (Butler et al., 2020; Farago et al., 2019; Thomas et al., 2017) is highly predicted
by lack of promoter and gene body methylation (p = 2.8e-13) (Figure 5, right).

Finally, we tested the expression of SLFN11 as a sensitizer and biomarker for replication-targeted therapies
commonly used in SCLC (etoposide, cisplatin, topotecan, lurbinectedin) (Jo et al., 2027; Kundu et al., 2021,
Murai et al., 2019; Thomas and Pommier, 2016). Immunoblot analyses on the NCI-DTP SCLC cell lines (Pol-
ley et al., 2016) demonstrated high correlation between SLFNT1T protein levels (“proSLFN11" in Figure 5,
bottom right) and gene expression (Pearson correlation (r) = 0.93, p value = 1.5e-26), which is consistent
with our initial studies performed in the NCI60 (Zoppoli et al., 2012). Next, we tested the predictive value
of the EPIC array data for SLFN11 and found very high predictive value by combining promoter and gene
body methylation (r = 0.82, p value = 5.9e-17) (Figure 5, bottom right). Both parameters obtained from the
EPIC array combination were also predictive of the activity of topotecan (Figure 5, bottom) with predictive
value primarily driven by gene body methylation (Figure S5C) rather than promoter methylation
(Figure S5D).

Together these analyses demonstrate the predictive value of the EPICmethylation data analyzed using the
CellMinerCDB algorithms (Luna et al., 2021) to classify SCLC and potentially predict therapies.

DISCUSSION

The SCLC-CellMiner web portal (https://discover.nci.nih.gov/SclcCellMinerCDB/) provides a unique plat-
form and data repository to examine multi-omics data for widely used patient-derived SCLC preclinical
models with data originating from complementary sources (NCI, DepMap, UT Southwestern, Cold-spring
Harbor) (Rudin et al., 2019; Tlemsani et al., 2020). SCLC-CellMiner enables researchers to directly compare
and mine gene expression patterns and pathways, and determine how gene expression and mutations may
be correlated and hence "predict” response to hundreds of drugs tested in the preclinical models (Polley
etal., 2016; Tlemsani et al., 2020). Compared to our previously released version (Tlemsani et al., 2020), the
updated version of SCLC-CellMiner integrates two new epigenetic markers: gene body methylation and
promoter enhancer signals (H3K27ac). These epigenetic marks, in addition to promoter methylation and
gene copy number (CNV), predict gene expression, classify SCLC cell lines, and show how omics analyses
predict drug responses. These new features are summarized in Table S4.

Genomic DNA methylation is maintained by DNMT1, which recognizes and methylates hemi-methylated
sites during replication. De novo DNA methylation is mainly deposited by DNMT3A and DNMT3B, which
binds to histone H3 Lysine 4 (H3K4) before methylating DNA at inactive gene promoters. At actively tran-
scribed genes, the promoters are marked by the trimethylation of H3K4, which inhibits the methyltransfer-
ase activity of DNMT3A/B, leading to decreased promoter methylation levels (Otani et al., 2009; Piunti and
Shilatifard, 2016; Zhang et al., 2010). As genes are transcribed by POL2, SETD2 trimethylates the core his-
tone H3 at lysine K36, which is recognized by DNMT3B, leading to hypermethylation in the gene body
(Dhayalan et al., 2010; Greenberg and Bourc'his, 2019; Hervouet et al., 2018; Roadmap Epigenomics
et al., 2015). Gene body methylation has been proposed to enhance transcription by suppressing the firing
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of alternate transcripts and by facilitating splicing (Bacolod and Barany, 2021; Huang et al., 2021; Neri et al.,
2017; Teissandier and Bourc'his, 2017; Yang et al., 2014). Apart from transcription, DNA methylation has
been shown to be mutually exclusive of the facultative heterochromatin marker H3K27me3 (Roadmap Epi-
genomics et al., 2015; Zhang et al., 2020). In addition, differential DNA methylation status has been seen in
euchromatin (A) and heterochromatin (B) compartments, where A-compartments tended to be hyperme-
thylated (Fortin and Hansen, 2015).

Our gene-level methylation profile analyses based on the high-resolution EPICmethylation 850K array
demonstrate that genes expressed at high levels are characterized not only by promoter hypomethylation
but also by gene body hypermethylation. The promoter hypomethylation valley is slightly narrower in lowly
expressed genes paired with decreasing gene body methylation values. Because of this relationship, pro-
moter methylation shows a negative correlation, while gene body methylation exhibits even higher positive
correlation with gene expression levels. Looking at non-expressed genes, promoters and gene bodies are
either both hypo- or hypermethylated. As transcription is lacking in these genes, methylation deposition
may be coordinated by other epigenetic markers and chromatin states (Brinkman et al., 2012; Fortin and
Hansen, 2015; Roadmap Epigenomics et al., 2015). From a translational viewpoint, our methylation algo-
rithms (mth: promoter and bmt: gene body) demonstrate the value of the DNA EPICmethylation 850K array
for predicting gene expression.

We also observed that DNA methylation levels are lower in enhancer areas, and that genic areas covered by
super-enhancers (SEs) tend to be completely hypomethylated. This is probably related to the elevated pro-
moter mark H3K4me3, which inhibits DNA methylation deposition that extends to wider genomic regions
in super-enhancers (Cao et al., 2017; Khan et al., 2018). This results in a counterintuitively negative corre-
lation between expression and gene body methylation and corresponds to a signature of genes covered
by super-enhancers, such as NEUROD1, FOXA1/2 and NKX2-1 (see Table Sé).

SCLC cell lines are classified into 4 main subtypes based on the four LTFs: ASCL1, NEUROD1, POU2F3, and
YAP1 (Rudin et al., 2019), and recent attempts have been made to extend this classification to clinical sam-
ples (Qu et al., 2022). Basic studies recently showed that these subtypes can be clustered using their SE
activity (Borromeo et al., 2016; Huang et al., 2018; Pozo et al., 2021). The clustering was also visible
when we used variable enhancers, not limiting to SEs. This was not surprising, as ASCL1, NEUROD1,
and POU2F3 binding sites have very little overlap, with elevated enhancer signal that is specific to each sub-
type. Additionally, DNA methylation levels are lower in the binding sites of ASCL1, NEUROD1, and POU2F3
(Yin et al., 2017). Finally, we demonstrate that promoter enhancer signal levels are strong predictors of
gene expression, outperforming DNA methylation and DNA methylation-derived copy-number as well.
Yet, in the absence of H3K27ac ChIP data, which is the case for clinical samples, our analyses demonstrate
the potential of the DNA EPICmethylation 850K array to significantly predict gene expression and match
tumors with the SCLC-LTF subgroups and with specific therapies such DLL3-based cytotoxins, temozolo-
mide (based on lack of MGMT) and the DNA replication targeted chemotherapies (etoposide, cisplatin,
camptothecin, and lurbinectedin) (based on the expression of SLFN11).

Limitations of the study

Our study has some limitations: 1) DNA methylation was measured with 850K arrays and RRBS (reduced rep-
resentation bisulfite sequencing), which cover more positions than the 450k array, are still limited to prede-
termined areas; 2) as gene body methylation is usually deposited through transcription, in cases where a
geneis expressedin all celllines, the gene body methylation level may be less predictive of expression levels
(which is similarly seen in case of promoter methylation); 3) Our data are based on cancer cell line models.
Therefore, follow-up clinical studies including both RNA-seq and EPICmethylation 850K arrays are war-
ranted to validate the predictive value of the high-resolution DNA methylation arrays in patient samples.
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KEY RESOURCES TABLE

RESOURCE SOURCE IDENTIFIER
Deposited data
NCI-SCLC cell line methylation (850K array)

Krushkal et al., 2020; Tlemsani et al., 2020) GSE145156

H3K27ac data Huang et al., 2018; Pozo et al., 2021) GSE151002, GSE115124
ASCL1, NEUROD1, POU2F3 data Borromeo et al., 2016; Huang et al., 2018) GSE69398, GSE115124
RRBS data Ghandi et al., 2019) PRJNA523380

CellMinerCDB cell line data
SCLC-CellMinerCDB cell line data

Rajapakse et al., 2018)
Tlemsani et al., 2020)

https://discover.nci.nih.gov/cellminercdb/

https://discover.nci.nih.gov/SclcCellMinerCDB/

Software and algorithms

APE
rtacklayer

clusterProfiler

ReactomePA

umap

minfi

ChlPseeker

ComplexHeatmap

(Paradis et al., 2004)
(Lawrence et al., 2009)

(Yu et al., 2012)

(Yu and He, 2016)

(Mclnnes et al., 2018)

(Aryee et al., 2014)

(Yu et al., 2015)

(Gu et al., 2016)

https://cran.r-project.org/web/packages/ape/index.html
https://bioconductor.org/packages/release/bioc/html/
rtracklayer.html
https://bioconductor.org/packages/release/bioc/html/
clusterProfiler.html
https://bioconductor.org/packages/release/bioc/html/
ReactomePA html
https://cran.r-project.org/web/packages/umap/
index.html
https://bioconductor.org/packages/release/bioc/html/
minfi.htm|
https://bioconductor.org/packages/release/bioc/html/
ChlPseeker.html
https://www.bioconductor.org/packages/release/bioc/

html/ComplexHeatmap.html

BAMscale (Pongor et al., 2020) https://github.com/ncbi/BAMscale

sva (Leek et al., 2012) https://bioconductor.org/packages/release/bioc/html/
sva.html

edgeR (Robinson et al., 2010) https://bioconductor.org/packages/release/bioc/html/
edgeR.html

bismark (Krueger and Andrews, 2011) https://www.bioinformatics.babraham.ac.uk/projects/
bismark/

trimmomatic (Bolger et al., 2014) http://www.usadellab.org/cms/?page=trimmomatic

bwa mem (Li, 2013) http://bio-bwa.sourceforge.net/bwa.shtml

samtools (Li et al., 2009) http://www.htslib.org/

MACS (Zhang et al., 2008) https://github.com/macs3-project/MACS

bedtools (Quinlan and Hall, 2010) https://bedtools.readthedocs.io/en/latest/

intervene (Khan and Mathelier, 2017) https://intervene.readthedocs.io/en/latest/
introduction.html

R (4.1.1) https://www.r-project.org/

Analysis scripts This paper https://github.com/pongorlorinc/SCLC_methylation

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the Lead Con-
tact, Yves Pommier (yves.pommier@nih.gov).
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Material availability

No new materials were generated for this study.

Data and code availability
® Analysis scripts used in the study have been deposited to the github code repository and is publicly avail-
able as of the date of publication. DOls are listed in the key resources table.

® DNA methylation and H3K27ac ChIP-seq data have been deposited at GEO and are publicly available as
of the date of publication. Accession numbers are listed in the key resources table.

® Any additional information required to reanalyze the data reported in this paper is available from the
lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

The cell lines used in this study were from human and include DMS 79 (M), NCI-H1092 (M), NCI-H146 (M),
NCI-H1694 (M), NCI-H2029 (F), NCI-H2081 (F), NCI-H209 (M), NCI-H211 (F), NCI-H2141 (M), NCI-H2171 (M),
NCI-H446 (M), NCI-H510 (M), NCI-H524 (M), NCI-H526 (M), NCI-H69 (M), NCI-H841 (M), SHP-77 (M), COLO
668 (F), COR L88 (M), COR-L279 (M), DMS 114 (M), DMS 273 (F), DMS 53 (M), NCI-H1105 (M), NCI-H1341 (F),
NCI-H196 (M), SW 1271 (M), NCI-H1048 (F), NCI-H1436 (M), NCI-H1836 (M), NCI-H1876 (M), NCI-H1963 (M),
NCI-H82 (M), NCI-H889 (F), COR-L47 (M), NCI-H1618 (F), NCI-H2066 (F), NCI-H128 (M), NCI-H1417 (F), NClI-
H1522 (M), NCI-H1688 (M), NCI-H187 (M), NCI-H1930 (M), NCI-H2107 (M), NCI-H250 (M), NCI-H345 (M),
NCI-H378 (F), NCI-H735 (F), NCI-H748 (M), NCI-H865 (F), COR-L32 (NA), NCI-H220 (M), NCI-H719 (F),
NCI-H720 (M), NCI-H847 (M), NCI-H1672 (M), NCI-H1882 (M), NCI-H2198 (M), NCI-H711 (M), NCI-H774
(M), DMS 187 (NA), LXFS 605L (NA), LXFS 650L (NA), NCI-H2330 (F), NCI-H249 (M), NCI-H69/CPR (M),
NCI-H69/LX10 (M), NCI-H69VCR/R (M) (F, female; M, male; NA, not available) (Tlemsani et al., 2020).

METHOD DETAILS

Bioinformatics analyses

Processing of raw methylation data

Raw methylation files (idat) format were processed in R using the minfi (v1.34.0) package (Aryee et al., 2014),
normalized with the preprocesslllumina() function. Methylation data was then mapped to the hg19 genome
version using the BSgenome.Hsapiens.UCSC.hg19 (v1.4.3) package as reference. Normalized methylation
values for each cell line were converted to bigwig format using the rtracklayer (v1.48.0) package (Lawrence
et al., 2009).

Comparison of methylation distribution in the genome

Methylation probes were annotated to CpG islands, promoters, genic regions and intergenic regions. CpG
island annotation in BED format was obtained from the UCSC site for the hg19 genome version. For genic
annotation the TxDb.Hsapiens.UCSC.hg19.knownGene (v3.2.2) package was used. Promoters were
defined as 2.5kb area upstream and downstream from the transcription start site. Genic regions between
the end of the promoter and transcription end site were defined as the gene body. Probes outside of CpGs,
promoters and genes were categorized as intergenic probes. Probes were denoted as hypermethylated, if
the beta value was above 0.5. The most variable methylation probes were used to perform UMAP clustering
of cell lines in each category using the UMAP package (v0.2.7.0) (Mclnnes et al., 2018) setting the random
state to 1, n_components to 2, n_neighbors to 6 and min_dist to 0.01.

DNA methylation profile of genes

The gene model was defined as promoter regions (2.5Kb area upstream and downstream of transcrip-
tion start site), gene body (area between promoter region and transcription end site), gene upstream
area (5kb upstream of promoter), and gene downstream area (Skb downstream of transcription end
site). The promoter area was divided into 25 bins, the gene body area was divided into 50 bins, while
the upstream and downstream areas were divided into 10 bins each. Genes were separated by expres-
sion quintiles. For each quintile, the average signal of each bin in each gene area was calculated, and
plotted in R.
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Analysis of RRBS based methylation data

The RRBS sequencing data for the CCLE SCLC cell lines were obtained from the SRA (https://www.ncbi.
nlm.nih.gov/sra, accession number PRINA523380). Reads were processed using the bismark (v0.22.3) pipe-
line (Krueger and Andrews, 2011), first aligning the reads with bismark to the hg19 genome version, fol-
lowed by extracting the methylation values using the bismark_methylation_extractor with the “—compre-
hensive —cytosine_report -CX —bedGraph” flags to generate a comprehensive report.

Quantification of gene body methylation

Gene body methylation was obtained for every gene by calculating the mean methylation of probes over-
lapping gene bodies, excluding CpG probes, and probes that overlap promoter areas. In cases of genes
with multiple transcripts, the transcript with the most positive correlation was selected, similar to the pro-
moter methylation analysis (Tlemsani et al., 2020).

Alignment and analysis of ChlP-seq data

We obtained ChlIP-seq data from GEO for H3K27ac (GSE151002 and GSE115124) and ASCL1
(GSE69398), NEUROD1 (GSE69398) and POU2F3 (GSE115124). Raw reads were trimmed using trimmo-
matic (v0.36) (Bolger et al., 2014), followed by read alignment using the bwa mem aligner (v 0.7.17)
(Li, 2013). Reads were sorted using samtools (v1.8) (Li et al., 2009), followed by duplicate marking using
picard-tools (v2.9.2). H3K27ac peaks were called using the MACS peak caller (Zhang et al., 2008) setting
the “—nomodel” flag using the broad peak calling setting. ASCL1, NEUROD1 and POU2F3 peaks were
called using the default settings of the MACS peak caller. Normalized sequencing depth coverages were
prepared using the BAMscale (v0.06) tool (Pongor et al., 2020). Peaks were annotated using the
ChlPseeker package (Yu et al., 2015). In case of the ASCL1, NEUROD1 and POU2F3 ChIP-seq experi-
ments, we compared binding site BED files using the intervene venn program(Khan and Mathelier,
2017), which is also able to separate peaks based on the colocalization. The resulting BED files from
the intervene package and bigwig files from BAMscale were used to create the colocalization heatmaps
with the heatmapper script available in the BAMscale github repository (https://github.com/ncbi/
BAMscale).

Enhancer H3K27ac assignment to gene promoters

When assigning peaks to genes, we first combined peaks that had 50% overlap with each other, and quan-
tified the gene signal with the BAMscale cov function (Pongor et al., 2020), followed by normalization with
the sva package (Leek et al., 2012) and TMM-FPKM normalized using the edgeR package (Robinson et al.,
2010) followed by log2(TMM-FPKM + 1) transformation. Since multiple peaks can overlap the promoter of a
single gene, we prioritized peaks based on distance and average signal. Peaks were prioritized using
2500bp, 5000bp, 10000bp and 15000bp distances intervals from the TSS site, where lower distance intervals
had higher priority. To select the appropriate gene and peak pair, we selected peaks which were in the
highest distance priority. In cases where multiple peaks were within a priority, the peak with highest
mean signal in the cell lines was selected. Finally, we selected the cell replicates that had the best corre-
lation with expression in the top 3000 genes with highest expression range based on RNA-seq data ob-
tained from the SCLC-CellMinerCDB.

Enhancer H3K27ac signal analysis and clustering in cell lines

Enhancer peak calls from each cell line were combined into a single peak set using bedtools (Quinlan and
Hall, 2010). Peak signals were quantified using BAMscale cov function (Pongor et al., 2020). Raw read counts
were normalized using sva package (Leek et al., 2012) and TMM-FPKM normalized using edgeR (Robinson
etal., 2010), and log2 (TMM-FPKM + 1) transformed. Since some cell lines had multiple replicates, we used
the replicate that was assigned during the gene promoter assignment analysis. The most variable sites
were used in the heatmap analysis, filtering for peaks with standard deviations above 1.25 in the cell lines.
The heatmap was drawn using the ComplexHeatmap package (Gu et al., 2016) R package, clustering peaks
into 4 groups, and separating cell lines based on their NAPY status. Peaks were annotated using the ChlP-
seeker (v1.28.3) R package (Yu et al., 2015). Differential pathway analysis of clusters was performed using
the clusterProfiler (v4.0.5) package (Yu et al., 2012) and ReactomePA (Yu and He, 2016) in R. Peaks were
also clustered using the UMAP package (v0.2.7.0) (Mclnnes et al., 2019) using default parameters and
setting the metric to Euclidean distance. The unrooted phylogenetic tree was constructed using the
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APE R package (Paradis et al., 2004) using the hclust() hierarchical clustering of Z-scored peaks, setting the
clustering to the “ward.D2" method.

QUANTIFICATION AND STATISTICAL DETAILS
Tests used to determine statistical significance include Wilcoxon signed-rank test (Figure 1C) and Pearson
correlation coefficients (Figures 1E, 2D, 2F, 4B-4E, 5, S1B, STF-S1G, S2C, and S5).
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