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Abstract

Major advances have been made in the field of precision medicine for treating cancer. However, 

many open questions remain that need to be answered to realize the goal of matching 

every cancer patient to the most efficacious therapy. To facilitate these efforts, we have 

developed CellMinerCDB: NCATS (https://discover.nci.nih.gov/rsconnect/cellminercdb_ncats/), 

which makes available activity information for 2,675 drugs and compounds, including multiple 

non-oncology drugs and 1,866 drugs and compounds unique to the National Center for Advancing 

Translational Sciences (NCATS). CellMinerCDB: NCATS comprises 183 cancer cell lines with 72 

unique to NCATS including some from previously understudied tissues of origin. Multiple forms 

of data from different institutes are integrated, including single and combination drug activity, 

DNA copy number, methylation and mutation, transcriptome, protein levels, histone acetylation 

and methylation, metabolites, CRISPR and miscellaneous signatures. Curation of cell lines and 

drug names enables cross-database (CDB) analyses. Comparison of the datasets is made possible 

by the overlap between cell lines and drugs across databases. Multiple univariate and multivariate 

analysis tools are built-in, including linear regression and LASSO. Examples have been presented 

here for the clinical topoisomerase I (TOP1) inhibitors topotecan and irinotecan/SN-38. This 

web-application provides both substantial new data and significant pharmacogenomic integration 

allowing exploration of interrelationships.
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Introduction

The approach to molecular biology and pharmacology, commonly referred as Precision 

Medicine has been significantly changed over the last ~25 years by the introduction of 

omics data and the conceptual shift to the use of computer analyses of large datasets 

with a combination of statistics, machine learning, omics visualizations and integration of 

multiple disparate forms of data. Starting with the pioneering work of the Developmental 

Therapeutics Program (DTP) at the National Cancer Institute (NCI) (1), many projects have 

been and are contributing sizable blocks of data, prominently including (but not limited 

to) the large (~1,000 cell line) panels of the Cancer Cell Line Encyclopedia (CCLE) from 

the Broad/Novartis, the Genomics of Drug Sensitivity in Cancer (GDSC) from Sanger and 

Massachusetts General Hospital and the Cancer Therapeutics Response Portal (CTRP) from 

the Broad Institute.

The Genomics and Pharmacology Facility (GPF) has pioneered omics data acquisition 

and integration since the mid 1990’s (1–9). Its efforts have led to the CellMiner and 

CellMinerCDB web-application (2–7,9,10) allowing pharmacogenomic database access and 

integrative analyses across all public cancer cell line genomics and drug response databases 

(2).

NCATS has established an automated compound screening platform for large compound 

libraries using quantitative high-throughput (qHTS) format across multiple different disease 

models since 2008 (11–13). For cancer cell line viability screening, NCATS created 

the Mechanism Interrogation PlatEs (MIPE) compound library comprising approved and 

investigational chemotherapeutic agents, as well as common medications for non-cancer 

indications. An additional design feature of the MIPE library is compound mechanistic 

redundancy allowing analyses across multiple compounds reported to hit the same target. 

Compound screening data using the MIPE library has demonstrated value for multiple 

cancer types, such as diffuse intrinsic pontine glioma (DIPG), Hodgkin’s lymphoma, 

Ewing sarcoma, small cell lung cancer, glioblastoma and others (9,14–17). Published and 

unpublished MIPE library compound screening data have been aggregated into a unified 

dataset called the NCATS-NCI Cytoxicity Dataset shared internally with the NCI through 

the Palantir Foundry platform. A subset of this unified dataset is now being made public 

through CellMinerCDB.

Here we introduce the public databases and web-portal of CellMinerCDB: NCATS (https://

discover.nci.nih.gov/rsconnect/cellminercdb_ncats/). CellMinerCDB: NCATS enables 

individual users to access and explore the large NCATS drug response database, with an 

emphasis on pharmacology and its relationships to molecular genomics. CellMinerCDB: 

NCATS is integrated with 33 datasets from multiple projects from DTP, GPF, CCLE, GDSC, 

CTRP, the NCI DTP Small Cell Lung Cancer Project (NCI SCLC), NCI60-DTP Almanac, 

MD Anderson and the Project Achilles from the DepMap portal (see “Supplementary 

Materials and Methods” for a full listing) (4,5,7,18–28). The omics analyses include single 

and two-drug activities, DNA copy number, methylation and sequencing, whole genome 

transcriptome, microRNA and selected protein expression, metabolite levels, and clustered 
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regularly interspaced short palindromic repeats (CRISPR) knockouts, allowing explorations 

of the relationships between those data and pharmacological responses. Functionalities 

of the new CellMinerCDB: NCATS web-application are introduced and discussed here 

with multiple examples validating the database. Details about general functionalities of the 

CellMinerCDB (https://discover.nci.nih.gov/rsconnect/cellminercdb/ ) platforms have been 

reviewed recently (2) and a 10-minute tutorial is on YouTube (see Figure 1A).

CellMinerCDB: NCATS is a public web-application hosted in the Genomics and 

Pharmacology Facility of the Developmental Therapeutics Branch of the NCI Center for 

Cancer Research, and of the National Center for Advancing Translational Sciences of the 

National Institutes of Health (NIH).

Materials and Methods

The NCATS screening data contained within the CellMinerCDB: NCATS web-application 

utilize RSTUDIO-2022.12.0-353 and were generated as previously described (29). Cells 

were treated with compounds for 48 hours in 1536 well plates and assessed for viability 

using CellTiter Glo (Promega, Madison, WI, USA). Data were normalized to plate controls 

of DMSO treated cells as 100% viability and no cells at 0% viability. A four-parameter 

curve fit was used to generate an IC50 and Area Under the Curve (AUC). Z-score AUC 

(across cell lines) was calculated by subtracting the mean AUC and dividing by the standard 

deviation of each drug across all cell lines screened.

All compounds were matched using SMILES and InChIKey to external databases to pull 

clinical status. NCATS Inxight, DrugBank, and CHEMBL were used as references for 

compound structure matching and global clinical status (30–32). Structure matching was 

done within the Palantir Foundry platform (Palantir Technologies, Denver CO) utilizing 

RDKit: Open-source cheminformatics (2021_09_4 (Q3 2021) Release); and NCATSFind 

Resolver. NCATS cell lines were annotated internally using Cellosaurus for disease and 

tissue type and matched to the other cell line sets (33). The NCATS web-application is an 

R/shiny app hosted on an NCI server.

Information sources for the cell lines and drugs include the NCI Thesaurus, PubChem and 

the scientific literature. The large amount of data coming from the included omics efforts 

and the platforms used to develop them has been previously described. Compound and cell 

line name variation across the different institutions cell line sets were resolved internally. 

An example is a single compound with the names 122958 (NCI-60), ATRA (GDSC), 

tretinoin (CTRP), and isotretinoin (NCATS). Another example is a single cell line with the 

names CO:COLO 205 (NCI-60), COLO 205 (CCLE), COLO-205 (GDSC), COLO205 (MD 

Anderson). All datasets have instances of missing data for specific cell lines, drugs or genes.

Univariate Analysis and Multivariate Analysis shown throughout were done using 

CellMinerCDB: NCATS functionalities or using data downloaded directly from 

CellMinerCDB: NCATS. The web-application generated scatterplots, tables and heatmap 

shown were generated using the selections described in the input boxes and figure legends. 

Drug versus drug activity comparisons not generated by the web-application were done by 
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Pearson correlation using R version 3.6.3. Bar charts were generated using GraphPad Prism 

version 7.0. Violin plots were generated using ggplot version 3.3.5.

Bimodal drug activity density distributions were identified using a combination of a 

Gaussian Mixed Model-based (norm1mix package (version 1.3), a kurtosis test and visual 

inspection. Both these calculations and the density plots were done using The R Project for 

Statistical Computing.

Prediction of NCATS IC50 activity using CCLE microarray transcript expression by both 

univariate and multivariate analysis used Pearson’s correlation between drug response and 

gene expression of the target. The multivariate models use stepwise forward regression. 

Each model was initiated with a target for a given drug; multiple targets generated multiple 

models. Possible regression features included genes from Onco500 (34). A maximum of 10 

features were added to each model and then pruned. For each iteration step, the feature with 

the lowest partial correlation p-value after removing the effects of already included features 

was added using rcellminer 2.9.1 (35). A 10-fold cross-validated predicted response was 

calculated at each step using rcellminerElasticNet 0.1.1. Models were pruned by examining 

the statistical difference in the correlation of predicted versus observed response with each 

added feature using cocor 1.1–3. CCLE microarray expression data from CellMinerCDB 

was used (2).

Data Availability

The data analyzed in this study were obtained from multiple sources. Within the application, 

the source of each data set is accessible within the Metadata tab, both within the “Select here 

to learn more about…” link and from the “Download Footnotes” tab. A description of all 

data sources used in CellMinerCDB: NCATS is provided in the “Supplementary Materials 

and Methods”.

Results

The CellMinerCDB: NCATS web-application

The CellMinerCDB: NCATS publicly accessible web-application was created to both access 

the NCATS drug response data and enrich and expand its usefulness by integrating multiple 

other forms and sources of genomics, proteomics, and metabolomics data from the other 

public cancer cell line datasets using the CellMinerCDB platform (2).

A screenshot of the site, banner, and tabs for the CellMinerCDB: NCATS web-application is 

presented in Figure 1A. CellMinerCDB: NCATS allows drug comparisons and emphasizes 

cross-database (CDB) analyses with the other public cancer cell line databases. The 

Univariate Analyses tab allows generation of on-the-fly bivariate scatter plots and 

correlation analyses from a single input to compare all profiles within selected data sets. 

The Multivariate Analyses tab allows the exploration of multivariate models predictive of 

an observed profile. Analyzing selected tissues of origin is an option for both univariate 

and multivariate analyses. The Metadata tab allows the download of datasets of interest for 

further processing and archiving. The Search IDs tab provides the identifiers within each 

cell line set by data type. The Help tab provides explanations and descriptions of the various 
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functionalities within the web-application. Additionally, the Video Tutorial tab provides a 

description and explanation of the CellMinerCDB functionalities. Thus, CellMinerCDB: 

NCATS provides new data, multiple functionalities, and data integration, allowing users to 

mine independently the NCATS data without having to seek support from bioinformatics 

teams.

The NCATS input data

CellMinerCDB: NCATS comprises 2,675 drugs and compounds tested in 183 cell lines; 

2,667 of which have mechanism of action designations. The dataset was created as 

described in Methods and Figure 1B. The output is fully compatible and integrated with 

CellMinerCDB (2). An asset of CellMinerCDB: NCATS is the unique compounds and 

cancer cell lines included (Figure 1C and D).

NCATS contains two drug sensitivity metrics, Z-Area Under the Curve (AUC) and 

IC50 values. These boast a large range of screening concentrations, routinely using 11 

concentrations between 0.79 nanomolar and 47 micromolar, which is an asset of NCATS 

drug testing (12). The drugs include 952 (36%) clinically approved, 790 (30%) that have 

entered clinical trials, and 908 drugs (34%) that are preclinical (Figure 1C, left). Notably, 

1,877 (70%) drugs and compounds are unique to NCATS (Figure 1C, right). They have 

been annotated with their commonly accepted mechanisms of action. A feature of the 

NCATS dataset is the inclusion of 518 approved non-oncology drugs not found in the other 

public databases (Supplemental Table 1). Those include 103 anti-infectives (anti-bacterial, 

mycobacterial, viral, or fungal) for systemic use, 86 cardiovascular or nervous system drugs, 

72 alimentary tract and metabolism compounds.

The 183 NCATS cell lines distribution by tissue of origin is detailed in Supplemental Table 

2. They include 72 (38%) unique cancer cell lines absent in other public cancer cell line 

databases (Figure 1D and Supplemental Table 3). Figure 1D shows several of the rare 

disease subtypes including diffuse intrinsic pontine gliomas (DIPG), renal Birt-Hogg Dubé 

syndrome, hereditary leiomyomatosis and TFE3 fusion cancer cell lines. details the. Thus, 

CellMinerCDB: NCATS provides the user with substantial new drug and cell line data.

Cell line and drug overlaps of NCATS with other cancer cell line datasets

The cell lines overlaps for CellMinerCDB: NCATS as well as all other cell line sets are 

listed in Figure 2A. As in our other CellMinerCDB websites (https://discover.nci.nih.gov/), 

cell lines are matched with common tissue of origin terms based on the OncoTree ontology 

levels developed by the Memorial Sloan Kettering Cancer Center and Dana-Farber Cancer 

Institute, primarily version 1.1 as described previously (2). Additional information such as 

patient gender or age from which the cell line originated are also included. Comparison 

between drug responses in cell lines is made possible by the overlap of cell lines across 

databases (Figure 2A).

The drug and compound activity overlap between the multiple cell line sets is presented 

in Figure 2B. Information on each cell line set activity measurements are accessible in the 

“Data Type” input box, Metadata “Units” description or footnotes, or the provided urls. An 

asset for the user is that CellMinerCDB: NCATS automatically matches cell line and drug 
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data across any cell line sets queried, which allows their comparison for identical, related by 

mechanism of action, or disparate drugs.

Omics data available for cross-comparisons in CellMinerCDB: NCATS

Figure 2C summarizes by cell line set and measurement type the profiles available 

in CellMinerCDB-NCATS, including 31,617 drug (and compound) activities, 261,848 

molecular measurements and 18,119 miscellaneous signatures. All 28 included datasets 

are available for download from the Metadata tab (see Fig. 1A). Our curation and 

standardization of these datasets minimizes the task of name matching.

The data types available for exploration based on the databases with overlapping cell 

lines include single-drug activities, two-drug combination activities, gene copy number, 

methylation and mutation levels, transcript expression, protein expression, metabolite 

levels, the DepMap Achilles (Achilles) CRISPR genetic dependencies, and miscellaneous 

molecular signatures. Those miscellaneous phenotypic signatures include the antigen 

presenting machinery (“APM”), epithelial mesenchymal status (“EMT”), replication stress 

(“RepStress”), genomic instability (“HRD_LOH”, “HRD-SUM”, “NtAI”, “LST”) and 

neuroendocrine status (“NE”). The metadata phenotypic signatures are accessible in the 

Univariate Analyses \ Data Type \ mda: Miscellaneous phenotypic data. The number of data 

explorations one might pursue, depending on one’s interest, easily jumps into the billions. 

The NCATS drug data can be compared to genomics data for the same cell lines in other 

datasets allowing one to relate the drug responses to omics features using CellMinerCDB: 

NCATS. The following examples illustrate the basic use of CellMinerCDB: NCATS.

Drug comparisons

The overlaps between cell lines and drugs across the “Cell Line Sets” facilitate multiple 

forms of drug comparisons. Figure 3A shows a Univariate Analyses/Plot Data output for 

two structurally related TOP1 inhibitors commonly used in clinical oncology (36), topotecan 

(x-axis) versus SN-38 (y-axis), the active metabolite of irinotecan. Both are measured by 

NCATS and displayed using CellMinerCDB-NCATS. The highly significant correlation 

between the two drugs (p=9.1×10−52) demonstrates internal assay consistency.

Similarly, Figure 3B shows a Univariate Analyses/Compare Patterns comparing the NCATS 

ALK inhibitor TAE-684 to other NCATS ALK inhibitors (by entering ALK inhibitor in 

the output MOA column). Of the 12 ALK inhibitors in the NCATS database, 10 show 

significant correlations demonstrating assay and mechanism of action reproducibility across 

cell lines within the NCATS drug response database.

Comparison of NCATS with GDSC and CTRP drug activities in Figure 3C and D, 

respectively shows the top 15 correlated compounds for each. Four protein kinase inhibitors 

are common between these two (shown as red bars): linifanib, sorafenib, AZD-7762 

and tivozanib. Figure 3E is a Univariate Analyses/Plot Data analysis of one of these 

comparisons, AZD-7762 as measured by both NCATS (x-axis) and CTRP (y-axis), yielding 

a p-value of 1.1×10−10. These observations demonstrate ways of comparing drug activities 

across databases to determine consistency across common cell line sets.
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Compared globally, the average Pearson’s correlation for NCATS versus either GDSC or 

CTRP across all compounds using Z-AUC or IC50 is 0.4. Violin plots (Figure 3F) visualize 

significant correlations between NCATS and 102/265 compounds (38.4%) for CTRP and 

71/212 compounds (33.5%) for GDSC. The NCATS versus the PRISM drug data are not 

included in this analysis as none had the minimum 16 cell lines with overlap. The Figure 3 

examples are only a small sampling of the types of informative comparisons one might do.

Exploration of NCATS drug responses with omics or CRISPR data

The integration of the NCATS drug responses with a wide range of molecular, phenotypic 

and signature data from the other omics databases (CCLE, GDSC, NCI) allows correlation 

queries for overlapping cell lines. We next present a small group of these as illustrations with 

outputs and screenshots from CellMinerCDB: NCATS.

Figure 4A validates SN-38 activity (in NCATS) versus SLFN11 gene transcript expression 

(in GDSC) using CellMinerCDB: NCATS Univariate Analyses/Plot data. The scatter plot 

confirms the expected significant correlation between these causally linked parameters (36). 

Figure 4B presents additional examples between NCATS and GDSC; all showing significant 

correlation between a drug’s activity and the transcript levels of that drug target.

A second form of omics data comparison is given in Figure 4C, comparing activity of 

the mTOR inhibitor VS-5584 from NCATS and MTOR DNA copy number from CCLE 

demonstrating significant correlation. CellMinerCDB: NCATS also shows that MTOR DNA 

copy number is significantly correlated to its transcript level (r=0.49, p=1.6E-61), providing 

the logical link between the drug activity and DNA copy number. Figure 4D provides 

additional examples of significant correlations between drug activities and DNA copy 

numbers; all linked through having the same gene both as drug target and molecular 

measurement. All have significant correlations between gene DNA copy number and 

transcript levels.

Figures 4E and F exemplify the possibility of testing NCATS drug activity versus genetic 

inactivation of the drug target. Figure 4E compares the growth inhibitory activity of 

vemurafenib (a BRAF inhibitor) to cell survival with BRAF CRISPR knockdown (as 

measured by Project Achilles). The resultant scatter plot demonstrates significant correlation 

between the two. Figure 4F lists other examples showing significant correlations between 

drug activities and CRISPR knockdown; in each case linked through having the same gene 

both as the drug and CRISPR target. As for the drugs in Figure 3, Figure 4 provides only a 

small sampling of the types of informative comparisons one might do.

To compare the predictive value of different genomics parameters, the NCATS approved and 

clinical trial drugs IC50 activities were each compared to the different genomics evaluations 

of their gene targets (transcript expression, gene copy number, methylation, mutations and 

CRISPR) across the other nine platforms in CellMinerCDB: NCATS resulting in 1,100 

drug versus gene pairings (see Supplemental Table 4). The percent significant correlations 

by platform were: i) 5.3% for the CCLE DNA copy number, ii) 8.8% for the GDSC 

methylation, iii) 6.5% for the CCLE mutation, iv) 5.1% for GDSC mutation, v) 11.8% for 

the CCLE transcript microarray, vi) 10.8% for the GDSC microarray, vii) 12.8% for the 
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CCLE RNA sequencing, viii) 9.2% for the CCLE protein and ix) 6.2% for the Achilles 

CRISPR. These results demonstrate the value of RNA sequencing and proteomic analyses 

for predicting drug activity.

Although determination of protein levels remains limited in clinical samples, we found that 

both protein expression and gene expression of the proapoptotic factor BAX in CCLE are 

significantly correlated with the IC50 activity of SN-38 in NCATS (Supplemental Figure 1; 

p-values = 0.0013 and 0.0026 for 88 and 95 common cell lines, respectively). Thus, based 

on the analysis of drugs tested in NCATS, we conclude that RNA-seq is currently the most 

practical predictor of drug response.

Multivariate and miscellaneous phenotypic signature (Mda) analyses using CellMinerCDB: 
NCATS

Presuming that multiple factors are involved in drug response (36), we present two 

approaches for clinical TOP1 inhibitors (topotecan and SN-38, the active metabolite of 

irinotecan) using CellMinerCDB: NCATS.

The first utilizes the prior knowledge that the cytotoxicity of TOP1 inhibitors are dependent 

on SLFN11, apoptosis and transcription (36). Combining transcript expression of SLFN11 

(Figure 5A), BPTF (Figure 5B) and HMGN1 (Figure 5C) shows how the predictive value of 

SLFN11 can be strengthened by using the multivariate analysis tool of NCATS:CDB (Figure 

5D and E).

The second multivariate analysis available in NCATS:CDB (and the other CellMinerCDB 

websites) uses previously described multi-gene expression signatures, which can be 

retrieved using the “mda” tab in the “Data Type” pull-down menu at the left of the website 

(Figure 6). Together, these examples demonstrate the increased power of aggregating 

multiple genomic parameters to predict drug activity.

Drug activity distributions and additional multivariate analysis

Figure 7 presents another form of exploration generated from the NCATS drug database: 

drug activity distributions with consideration of tissues of origin. Bimodal drug distributions 

were identified, demonstrating both sensitive and resistant cancer cell line responses. 

Enrichment for specific tissues of origin in the activity peaks demonstrates novel 

prospective therapeutic indications. Multivariate analyses using CCLE transcriptomics 

visualize multivariate molecular predictors. The first example given is for filanesib, with it’s 

bimodal activity distribution visualized in Figure 7A and the significant prediction of that 

activity by KIF11, MYBBP1A and TNFRSF10D (p=1.2×10−7) in Figure 7B. The second 

example given is for epothilone, with it’s bimodal activity distribution visualized in Figure 

7C and the significant prediction of that activity by TUBB6, ABCG1, GSK3G and MLH1 
(p=1.2×10−7) in Figure 7D. Diverse mechanisms of action drugs reveal enhanced activities 

for bladder, blood (leukemia), bone (sarcoma), bowel, brain and lymphatic cancer cells in 

Figure 7E.

Supplemental Table 5 presents an example of a more systematic pharmacological prediction 

approach of NCATS IC50 drug activity distributions using CCLE microarray transcript 
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levels. Included are 63 significant gene-drug combinations in which the genes are known 

targets for those drugs. In the case of ABT-737 (a BH3 mimetic and BCL2 gene family 

inhibitor), the generated multivariate model includes two known targets: BCL2L2 and BCL2 

(as given by NCATS annotation).

Discussion

Making the NCATS drug activities publicly available is a significant addition to the omics 

arena. CellMinerCDB: NCATS gathers the NCATS drug response database and integrates 

it with nine other genomic and proteomic projects (see Fig. 1). The NCATS 2,675 drugs 

and compounds is second only to the large NCI/DTP activity screening in number (2) (Figs. 

1–2). Its high proportion of novel drugs, large number of non-oncology drugs and inclusion 

of many novel cell lines, including rare tumors add significantly to the omics cancer cell line 

field.

Our curation of both the cell line and drug names enables integration with our previous 

CellMiner databases (2,3,9). It also resolves differences, making data retrieval and 

comparisons available with an intuitive web application. This combined with the molecular, 

metabolic, phenotypic and signature data from NCI, CCLE, GDSC and other databases adds 

a myriad of informative molecular parameters for the purposes of exploration, discovery, 

prediction and verification of either previously known or novel relationships.

We find that the activity of drugs with similar mechanisms of action is in general internally 

consistent within NCATS and across the other drug databases (CCLE, CTRIP, GDSC, 

NCI) as shown in Figure 3. Activity variability for overlapping drugs between institutes 

is recognized and presumably comes from a combination of the type of robotics and 

biological techniques employed (37). NCATS uses 1536 well plates, with compounds added 

immediately after cell plating and 48-hour drug exposure. CTRP and GDSC use 384 well 

plates, with compounds added 24 hours after cells plating and 72-hour drug incubation. 

All three projects use CellTiter-Glo. It is unsurprising that drug activity assays done under 

different conditions might give different results. However, our analyses shows that multiple 

drugs and compounds perform similarly regardless of differences in assay parameters. Thus, 

our recommendation for pharmacogenomics exploration with CellMinerCDB: NCATS is 

to first perform inter-database analyses with drugs present in at least two platforms and 

prioritize drugs with consistent cytotoxicity response across databases.

CellMinerCDB: NCATS comprises two main analysis tools): “Univariate Analyses” and 

“Multivariate Analyses” (see Fig. 1A. The pharmacogenomics analyses shown in Figures 

3–7, all generated within the CellMinerCDB: NCATS web-application, provide examples of 

the many types of analysis possible. With 14.7 billion drug activity versus gene molecular 

or phenotypic (CRISPR) measurements, practically, one is limited only by the number 

of questions and knowledge one has. This number does not include the many intergene 

molecular and interdrug activity comparisons one might do.

Figures 3A, 4A, 5A–E and Supplementary Figure 1 provide pharmacogenomic and 

proteomic explorations for SN-38, as prior work has causally related SLFN11 expression 
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to the activity of TOP1 inhibitors (6,38–40). The additional transcript examples in Figure 

4B, and DNA copy number examples in Figure 4C and D link various NCATS drugs to their 

molecular targets. The ability to perform gene knockdown (CRISPR) comparisons reflect 

how a gene knockdown measured in Project Achilles relates to response to drugs measured 

in NCATS. None of the 33 drug-target examples listed are FDA-approved biomarkers for 

their respective drugs; so each of them provides possible incentive for their development and 

use. One might easily expand this type of analysis to non-target, but biologically relevant 

genes based on domain knowledge.

When using “Univariate Analyses”, we find the transcript data are stronger predictors 

of pharmacological response than the other genomic data (gene mutations, copy number 

variation, or methylation) available in the cancer cell lines (Supplemental Table 4). Currently 

DNA mutation is a predominant biomarker used for drug prediction. Although we see 

the expected predictive value of BRAF mutations with the activity of vemurafenib and 

dabrafenib (Supplemental Figure 2), mutations only predict the activity of a relatively small 

subset of drugs routinely used in oncology. In addition to having reliable gene coverage and 

being implemented clinically RNA-seq data are advantageous for the construction of multi-

gene signatures. The cell line superiority for the prediction of pharmacological response is 

likely to translate clinically over time, leading to its gaining dominance for that purpose.

Because pharmacological response is a product of multiple molecular factors, drug activity 

prediction or exploration is expected to be improved and tested using the “Multivariate 

Analyses” tools of CellMinerCDB: NCATS. Figures 5 provide examples of how building 

multigene analyses can be explored. This approach requires an understanding of the 

pathways and targets that determine drug response. Taking the example of SN-38 (the active 

metabolite of irinotecan) and topotecan (36), Figure 5 shows how “Multivariate Analyses” 

can be generated. CellMinerCDB also provides preexisting gene signatures. Figure 6 uses a 

precomputed multi-gene signature, the 18-transcript replication stress (RepStress) signature 

(29). Increased level of this stress parameter is significantly correlated with topotecan and 

SN-38 response, providing proof-of-principle and a testable preclinical model for RepStress 

as predictive for patient response to TOP1 inhibitors. Having precomputed signatures avoids 

looking up the reference, finding the genes involved, determining and then applying the 

algorithm for the cell line set of interest.

Downloading the data of CellMinerCDB: NCATS reveals drug activity distribution 

enrichments for some tissue of origins within the cancer cell line panels. All the cancer 

types enriched indicate prospective novel applications for those drugs, presumably with 

responsive subsets. Non-oncology drugs might also be studied. An example from Figure 7E 

is disulfiram, a drug used to discourage alcohol intake. Response to this drug is bimodal 

across the NCATS cancer cell lines, with improved activity in bone (sarcoma) cell lines. 

This result expands our prior work on the discovery of acetalax, another non-cancer drug, 

with activity in triple-negative breast cancer cell lines (3).

In summary, the wealth of information in the CellMinerCDB: NCATS web-application, 

albeit with its own limitations, allows basic and clinician researchers to explore 

pharmacogenomic relationships in either univariate or multivariate fashion. One may 
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consider drug response in the context of multiple forms or combinations of outputs that 

easily run into the billions. The web-application facilitates the user’s ability to explore 

those relationships and explore potential pharmacogenomic parameters applicable to clinical 

studies.

Limitations of the data come in multiple forms requiring multiple solutions. Missing data 

might be addressed by simply carrying out the salient form of analysis to fill those gaps.

More complete analysis of variability between platforms might be done by adding 

overlapping cell lines, drugs, or assays of interest. Algorithmic approaches that better 

consider the limitations and proper interpretation of datasets can improve results at that 

level, including the expansion of multivariate analysis functionality and approach selection. 

Recognitions of signatures predictive of pharmacological response should yield improved 

success in that area. It should be noted that the relationships found do not constitute proof of 

causality. The continued exploration and definition of how best to integrate cancer cell lines 

omics data with that from patients and to integrate clinical data into the omics format remain 

fields in their infancy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Significance

CellMinerCDB: NCATS provides activity information for 2,675 drugs in 183 cancer cell 

lines and analysis tools to facilitate pharmacogenomic research and identify determinants 

of response.
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Figure 1: The CellMinerCDB: NCATS web application, NCATS dataset, drugs and cell lines.
A. Url, banner and tabs for the CellMinerCDB: NCATS web-application. B. Schematic of 

the creation of the NCATS-NCI cytotoxicity dataset. Multiple versions of the MIPE library 

were combined into a single dataset to make the “NCATS-NCI” “Cytotoxicity Dataset”. 

This dataset was trimmed down to remove cell lines with introduced genetic modifications, 

pre-treatment conditions, non-standard media additives and data not meeting the sharing 

embargo date of 18 months. C. Pie chart on left showing the clinical status of the 2,675 

CellMinerCDB: NCATS compounds: 36% are FDA-approved, 30% have entered clinical 

trials and 34% are experimental. Pie chart on right showing the compounds overlapping 

between CellMinerCDB: NCATS and all other datasets included in CellMinerCDB 1.4. 

Thirty percent (837) of NCATS compounds overlap with at least one of the other 

CellMinerCDB datasets and 70% (1,860) do not. Of those compounds found only in the 

NCATS datasets, there are multiple non-cancer drug types included (see box). D. Pie chart 

showing the cell line overlaps between CellMinerCDB: NCATS, and all other datasets 

included in CellMinerCDB 1.4.
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Figure 2: Cell line and drug overlap, and data types in CellMinerCDB-NCATS.
A. Cell lines overlap between NCATS and the 9 other cell line datasets. CCLE is the 

Cancer Cell Line Encyclopedia, CTRP the Cancer Therapeutics Response Portal, GDSC the 

Genomics of Drug Sensitivity in Cancer, Project Achilles is from the Cancer Dependency 

Map Portal (DepMap), PRISM is the Profiling Relative Inhibition Simultaneously in 

Mixtures from Broad-MIT, NCI SCLC is the National Cancer Institute small cell lung 

cancer, DTP is the Developmental Therapeutics Program and NCI Almanac is the NCI60-

DTP Almanac. B. Drug overlap between NCATS and the 7 other cell line datasets. Number 

of drugs is as based on the comparison of NCATS area under the curve (AUC) overlap 

and the 7 other cell line sets. The MD Anderson and DepMap Achilles cell line datasets 

are not included as they have no drug activities. The NCI Almanac has two-drug activities 

measurements. The drugs with data for inhibitory concentration 50% (IC50’s) are slightly 

less in number. For acronym definitions see panel A. C. Available data in CellMinerCDB: 

NCATS. For the “Drug activities” columns, the “Single” numbers are compounds or drugs. 

The “Combo” drugs are 2-drug combinations for 105 FDA-approved drugs. For the DNA, 

RNA, and CRISPR columns, the numbers are genes with information for that cell line set. 

For the “Protein” columns, the numbers are epitopes for the RPPA (reverse phase protein 

arrays) and protein fragments for the mass spectrometry. For the “Metabolite” column, the 

numbers are metabolites. For the “Signatures” column, the number is signatures of various 

types. CTRP DNA copy number and mutation, microarray log2, and signatures data is 

identical to that in CCLE, and so is not included here.
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Figure 3: Comparisons of drugs in CellMinerCDB: NCATS.
A. Scatter plot of the activities of topotecan (x-axis) versus SN38 (y-axis), both measured by 

NCATS. The plot is a screenshot from CellMinerCDB-NCATS (see Figure 1A: Univariate 

Analyses). B. Comparison of the ALK inhibitor TAE-684 with the other ALK inhibitors 

tested by NCATS. The results were generated using CellMinerCDB-NCATS (Univariate 

Analyses \ Compare Patterns tab selections) including a filter to output only “ALK 

inhibitor” in the MOA (mechanism of action) column and ordered by p-value. C. Bar 

graph showing the top 15 compounds with the highest positive correlation for IC50 

value comparisons between NCATS and GDSC. Red bars highlight the compounds highly 

correlated between NCATS and CTRP (panel D): linifanib, sorafenib, AZD-7762 and 

tivozanib. The primary target of each compound is shown in parenthesis. D. Bar graph 

showing the top 15 compounds with the highest positive correlation for IC50 values between 
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NCATS and CTRP. Red bars highlight the compounds highly correlated between NCATS 

and GDSC (panel C). The primary target of each compound is shown in parenthesis. E. 
A scatter plot of AZD-7762 activity as measured by NCATS (x-axis) vs. CTRP (y-axis). 

The plot is a screenshot generated using the Univariate Analyses \ Plot Data tab selections. 

For the scatter plots A, B and E, individual dots are cell lines with color coding by tissue 

of origin. F. Violin plot showing all compounds with IC50 with positive correlations and 

with p-values < 0.05 between either between NCATS and CTRP or NCATS and GDSC. All 

compounds shown had a minimum of 16 cell lines overlap between datasets. The box plot 

overlay shows a median correlation of 0.4. All correlations presented are Pearson’s.
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Figure 4: NCATS:CDB Univariate comparisons of drug activities to transcript, DNA copy 
number and CRISPR signatures.
A. Scatter plot of SLFN11 transcript expression from GDSC (x-axis) versus SN-38 

activity measured by NCATS (y-axis). The plot is a snapshot from CellMinerCDB-NCATS 

(Univariate Analyses). B. Additional examples of significantly correlated and biologically 

linked NCATS IC50 drug activities versus GDSC transcript expression levels. All gene 

examples are targets for the corresponding drugs. C. Scatter plot of MTOR DNA copy 

number as measured by CCLE (x-axis) versus VS-5584 activity as measured by NCATS 

(y-axis). The plot is a screenshot from CellMinerCDB-NCATS (Univariate Analyses \ Plot 

Data tab selections) with the specific inputs used detailed in the boxes to the left. The 

vertical line has been added at 0 intensity or 2N DNA copy number. The units for the 

x axis have been converted from intensity to ploidy (Copy Number = 2 × 2intensity) for 
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biological clarity. D. Additional examples of significantly correlated and biologically linked 

NCATS IC50 drug activities versus CCLE DNA copy number from plots generated as in D. 

Genes are targets of the corresponding drugs. E. Scatter plot of BRAF CRISPR knockdown 

cell survival from the Achilles Project (x-axis) versus vemurafenib activity as measured by 

NCATS (y-axis). The plot is a screenshot from CellMinerCDB (Univariate Analyses \ Plot 

Data tab) with the specific inputs used detailed in the input boxes to the left. The vertical 

line has been added at 0 to indicate that the cell lines to the left of line have decreased 

survival following knocking down BRAF. F. Additional examples of significant correlations 

of drug activities versus CRISPR knockdown of the target genes. The CRISPR knockdown 

cell survival data are from the Achilles Project. All correlations presented in the figure are 

Pearson’s. For all scatter plots, dots are cell lines with color coding by tissue of origin 

indicated to the right.
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Figure 5. Multivariate analysis of SN-38 activity in NCATS using the expression of SLFN11, 
BPTF, HMGN1 and BAX in the overlapping cell lines in CCLE are better predictors of SN-38 
activity than any of the 4 genes taken individually.
A. Predictive value of SLFN11 expression. B. Predictive value of BPTF (encoding a protein 

regulating chromatin remodeling as a regulator of ATP hydrolysis of the NURF complex). 

C. Predictive value of HMGN1 (encoding High Mobility Group Nucleosome-binding 

domain-containing protein 1) associated with active transcription. D. Cluster image map of 

the multivariate analysis of SN-38 activity predicted by the expression of 4 genes together. 

See Supplementary Fig. 1 for BAX univariate data. E. Scatter plot of the observed versus 

10-fold cross-validation for SN-38 using the same predictor genes as in D.
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Figure 6. Genomic signature analysis identifies replication stress (RepStress) but not EMT 
(Epithelial-Mesenchymal Transition) as predictor of SN-38 activity in the overlapping cell lines 
of NCATS and CCLE.
Left and right panels: snapshots of CellMinerCDB: NCATS for RepStress and EMT, 

respectively.
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Figure 7: Drug distributions, tissue of origin enrichments and molecular predictors of drug 
activity.
A. A density plot of filanesib activity (IC50 z-scores from NCATS) (x-axis) versus 

distribution of the cell lines plotted as density (y-axis). B. Multivariate analysis for filanesib 

activity as the response variable and CCLE transcript expression of three genes as predictor 

variables. C. Density plot of epothilone A activity (x-axis) versus density (y-axis). The 

brain enrichment p-value is 0.082. D. Multivariate analysis for epothilone A activity as 

the response variable and CCLE transcript expression of four genes as predictor variables. 

E. Density plots for 4 NCATS drugs showing drug activity IC50 z-scores vs. distribution 

of the cell lines plotted as density (y-axis). For the density plots in A, C and E, drug 

activities are z-scores calculated across cell lines for IC50s (x-axis). Enriched tissue of 

origins are included (if present) with both the number of cell lines present within the peak 
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(first number) and total number of cell lines of that type (second number). The asterisks 

indicate significant p-values <0.05. All other p-values are less than 0.07. In the scatter plots 

B and D, the predicted drug activity is on the x-axis and the observed drug activity is on 

the y-axis. All correlations presented are Pearson’s. Dots are cell lines with color coding 

by tissue of origin. The plots were created using the CellMinerCDB: NCATS \ Multivariate 

Analyses \ Plot Data tab selections with the specific inputs used detailed in the input boxes 

to the left
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